
ClangFormat ¶

ClangFormat describes a set of tools that are built on top of
 LibFormat. It can support your workflow in a variety of ways
including a
standalone tool and editor integrations.

Standalone Tool ¶

clang-format is located in clang/tools/clang-format and can be used
 to format C/C++/Java/JavaScript/Objective-C/Protobuf/C#
code.

$ clang-format -help
OVERVIEW: A tool to format C/C++/Java/JavaScript/Objective-C/Protobuf/C# code.

If no arguments are specified, it formats the code from standard input

and writes the result to the standard output.

If <file>s are given, it reformats the files. If -i is specified

together with <file>s, the files are edited in-place. Otherwise, the

result is written to the standard output.

USAGE: clang-format [options] [<file> ...]

OPTIONS:

Clang-format options:

 --Werror - If set, changes formatting warnings to errors

 --assume-filename=<string> - Override filename used to determine the language.

 When reading from stdin, clang-format assumes this

 filename to determine the language.

 --cursor=<uint> - The position of the cursor when invoking

 clang-format from an editor integration

 --dry-run - If set, do not actually make the formatting changes

 --dump-config - Dump configuration options to stdout and exit.

 Can be used with -style option.

 --fallback-style=<string> - The name of the predefined style used as a

 fallback in case clang-format is invoked with

 -style=file, but can not find the .clang-format

 file to use.

 Use -fallback-style=none to skip formatting.

 --ferror-limit=<uint> - Set the maximum number of clang-format errors to

 emit before stopping (0 = no limit). Used only

 with --dry-run or -n

 -i - Inplace edit <file>s, if specified.

 --length=<uint> - Format a range of this length (in bytes).

 Multiple ranges can be formatted by specifying

 several -offset and -length pairs.

 When only a single -offset is specified without

 -length, clang-format will format up to the end

 of the file.

 Can only be used with one input file.

 --lines=<string> - <start line>:<end line> - format a range of

 lines (both 1-based).

 Multiple ranges can be formatted by specifying

 several -lines arguments.

 Can't be used with -offset and -length.

 Can only be used with one input file.

 -n - Alias for --dry-run

 --offset=<uint> - Format a range starting at this byte offset.

 Multiple ranges can be formatted by specifying

 several -offset and -length pairs.

 Can only be used with one input file.

 --output-replacements-xml - Output replacements as XML.

 --sort-includes - If set, overrides the include sorting behavior

 determined by the SortIncludes style flag

 --style=<string> - Coding style, currently supports:

 LLVM, Google, Chromium, Mozilla, WebKit.

 Use -style=file to load style configuration from

 .clang-format file located in one of the parent

 directories of the source file (or current

 directory for stdin).

 Use -style="{key: value, ...}" to set specific

 parameters, e.g.:

 -style="{BasedOnStyle: llvm, IndentWidth: 8}"

 --verbose - If set, shows the list of processed files

Generic Options:

https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html#clangformat
https://releases.llvm.org/10.0.0/tools/clang/docs/LibFormat.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html#standalone-tool

 --help - Display available options (--help-hidden for more)

 --help-list - Display list of available options (--help-list-hidden for more)

 --version - Display the version of this program

When the desired code formatting style is different from the available options,
the style can be customized using the -style="{key:
value, ...}" option or
by putting your style configuration in the .clang-format or _clang-format
file in your project’s directory and using
clang-format -style=file.

An easy way to create the .clang-format file is:

clang-format -style=llvm -dump-config > .clang-format

Available style options are described in Clang-Format Style Options.

Vim Integration ¶

There is an integration for vim which lets you run the
clang-format standalone tool on your current buffer, optionally
selecting
regions to reformat. The integration has the form of a python-file
 which can be found under clang/tools/clang-format/clang-
format.py.

This can be integrated by adding the following to your .vimrc:

map <C-K> :pyf <path-to-this-file>/clang-format.py<cr>

imap <C-K> <c-o>:pyf <path-to-this-file>/clang-format.py<cr>

The first line enables clang-format for NORMAL and VISUAL mode, the
second line adds support for INSERT mode. Change “C-K”
to another binding if
you need clang-format on a different key (C-K stands for Ctrl+k).

With this integration you can press the bound key and clang-format will
format the current line in NORMAL and INSERT mode or
the selected region in
VISUAL mode. The line or region is extended to the next bigger syntactic
entity.

It operates on the current, potentially unsaved buffer and does not create
or save any files. To revert a formatting, just undo.

An alternative option is to format changes when saving a file and thus to
have a zero-effort integration into the coding workflow.
To do this, add this to
your .vimrc:

function! Formatonsave()

 let l:formatdiff = 1

 pyf ~/llvm/tools/clang/tools/clang-format/clang-format.py

endfunction

autocmd BufWritePre *.h,*.cc,*.cpp call Formatonsave()

Emacs Integration ¶

Similar to the integration for vim, there is an integration for
emacs. It can be found at clang/tools/clang-format/clang-format.el
and used by adding this to your .emacs:

(load "<path-to-clang>/tools/clang-format/clang-format.el")

(global-set-key [C-M-tab] 'clang-format-region)

This binds the function clang-format-region to C-M-tab, which then formats the
current line or selected region.

BBEdit Integration ¶

clang-format cannot be used as a text filter with BBEdit, but works
well via a script. The AppleScript to do this integration can be
found at
 clang/tools/clang-format/clang-format-bbedit.applescript; place a copy in
 ~/Library/Application Support/BBEdit/Scripts,
and edit the path within it to
point to your local copy of clang-format.

With this integration you can select the script from the Script menu and
clang-format will format the selection. Note that you
can rename the
menu item by renaming the script, and can assign the menu item a keyboard
shortcut in the BBEdit preferences,
under Menus & Shortcuts.

CLion Integration ¶

https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormatStyleOptions.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html#vim-integration
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html#emacs-integration
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html#bbedit-integration
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html#clion-integration

clang-format is integrated into CLion as an alternative code formatter. It is disabled by default and
 can be turned on in
Settings/Preferences | Editor | Code Style.

If clang-format support is enabled, CLion detects config files when
opening a project and suggests overriding the current IDE
settings. Code style
rules from the .clang-format files are then applied automatically to all
editor actions, including auto-completion,
code generation, and refactorings.

Visual Studio Integration ¶

Download the latest Visual Studio extension from the alpha build site. The default key-binding is Ctrl-R,Ctrl-F.

Script for patch reformatting ¶

The python script clang/tools/clang-format/clang-format-diff.py parses the
output of a unified diff and reformats all contained lines
with
clang-format.

usage: clang-format-diff.py [-h] [-i] [-p NUM] [-regex PATTERN] [-style STYLE]

Reformat changed lines in diff. Without -i option just output the diff that

would be introduced.

optional arguments:

 -h, --help show this help message and exit

 -i apply edits to files instead of displaying a diff

 -p NUM strip the smallest prefix containing P slashes

 -regex PATTERN custom pattern selecting file paths to reformat

 -style STYLE formatting style to apply (LLVM, Google, Chromium, Mozilla,

 WebKit)

So to reformat all the lines in the latest git commit, just do:

git diff -U0 --no-color HEAD^ | clang-format-diff.py -i -p1

With Mercurial/hg:

hg diff -U0 --color=never | clang-format-diff.py -i -p1

In an SVN client, you can do:

svn diff --diff-cmd=diff -x -U0 | clang-format-diff.py -i

The option -U0 will create a diff without context lines (the script would format
those as well).

© Copyright 2007-2020, The Clang Team.
Created using Sphinx 1.8.5.

https://www.jetbrains.com/clion/
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html#visual-studio-integration
https://llvm.org/builds/
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html#script-for-patch-reformatting
http://sphinx-doc.org/

