
Clang Compiler User’s Manual ¶

Introduction
Terminology
Basic Usage

Command Line Options
Options to Control Error and Warning Messages

Formatting of Diagnostics
Individual Warning Groups

Options to Control Clang Crash Diagnostics
Options to Emit Optimization Reports

Current limitations
Other Options
Configuration files

Language and Target-Independent Features
Controlling Errors and Warnings

Controlling How Clang Displays Diagnostics
Diagnostic Mappings
Diagnostic Categories
Controlling Diagnostics via Command Line Flags
Controlling Diagnostics via Pragmas
Controlling Diagnostics in System Headers
Enabling All Diagnostics
Controlling Static Analyzer Diagnostics

Precompiled Headers
Generating a PCH File
Using a PCH File
Relocatable PCH Files

Controlling Floating Point Behavior
Controlling Code Generation
Profile Guided Optimization

Differences Between Sampling and Instrumentation
Using Sampling Profilers

Sample Profile Formats
Sample Profile Text Format

Profiling with Instrumentation
Disabling Instrumentation
Profile remapping

GCOV-based Profiling
Controlling Debug Information

Controlling Size of Debug Information
Controlling Macro Debug Info Generation
Controlling Debugger “Tuning”

Controlling LLVM IR Output
Controlling Value Names in LLVM IR

Comment Parsing Options
C Language Features

Extensions supported by clang
Differences between various standard modes
GCC extensions not implemented yet
Intentionally unsupported GCC extensions
Microsoft extensions

C++ Language Features
Controlling implementation limits

Objective-C Language Features
Objective-C++ Language Features
OpenMP Features

Controlling implementation limits
OpenCL Features

OpenCL Specific Options
OpenCL Targets

Specific Targets
Generic Targets

OpenCL Header
OpenCL Extensions
OpenCL Metadata
OpenCL-Specific Attributes

nosvm
opencl_unroll_hint
convergent
noduplicate
address_space

OpenCL builtins

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#clang-compiler-user-s-manual
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#introduction
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#terminology
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#basic-usage
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#command-line-options
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#options-to-control-error-and-warning-messages
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#formatting-of-diagnostics
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#individual-warning-groups
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#options-to-control-clang-crash-diagnostics
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#options-to-emit-optimization-reports
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#current-limitations
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#other-options
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#configuration-files
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#language-and-target-independent-features
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-errors-and-warnings
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-how-clang-displays-diagnostics
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#diagnostic-mappings
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#diagnostic-categories
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-diagnostics-via-command-line-flags
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-diagnostics-via-pragmas
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-diagnostics-in-system-headers
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#enabling-all-diagnostics
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-static-analyzer-diagnostics
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#precompiled-headers
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#generating-a-pch-file
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#using-a-pch-file
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#relocatable-pch-files
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-floating-point-behavior
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-code-generation
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#profile-guided-optimization
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#differences-between-sampling-and-instrumentation
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#using-sampling-profilers
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#sample-profile-formats
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#sample-profile-text-format
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#profiling-with-instrumentation
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#disabling-instrumentation
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#profile-remapping
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#gcov-based-profiling
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-debug-information
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-size-of-debug-information
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-macro-debug-info-generation
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-debugger-tuning
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-llvm-ir-output
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-value-names-in-llvm-ir
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#comment-parsing-options
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#c-language-features
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#extensions-supported-by-clang
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#differences-between-various-standard-modes
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#gcc-extensions-not-implemented-yet
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#intentionally-unsupported-gcc-extensions
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#microsoft-extensions
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cxx
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-implementation-limits
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#objective-c-language-features
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#objcxx
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#openmp-features
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id6
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-features
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-specific-options
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-targets
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#specific-targets
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#generic-targets
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-header
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-extensions
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-metadata
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-specific-attributes
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#nosvm
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-unroll-hint
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#convergent
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#noduplicate
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#address-space
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-builtins

C++ for OpenCL
Constructing and destroying global objects

Target-Specific Features and Limitations
CPU Architectures Features and Limitations

X86
ARM
PowerPC
Other platforms

Operating System Features and Limitations
Darwin (macOS)
Windows

Cygwin
MinGW32
MinGW-w64

clang-cl
Command-Line Options

The /clang: Option
The /Zc:dllexportInlines- Option
The /fallback Option

Introduction ¶

The Clang Compiler is an open-source compiler for the C family of
programming languages, aiming to be the best in class implementation of
these
languages. Clang builds on the LLVM optimizer and code generator,
allowing it to provide high-quality optimization and code generation
support for
many targets. For more general information, please see the
Clang Web Site or the LLVM Web
Site.

This document describes important notes about using Clang as a compiler
 for an end-user, documenting the supported features, command line
options, etc. If you are interested in using Clang to build a tool that
 processes code, please see “Clang” CFE Internals Manual. If you are
interested in the
Clang Static Analyzer, please see its web
page.

Clang is one component in a complete toolchain for C family languages.
A separate document describes the other pieces necessary to
assemble a
complete toolchain.

Clang is designed to support the C family of programming languages,
which includes C, Objective-C, C++, and
Objective-C++ as well as many
dialects of those. For
language-specific information, please see the corresponding language
specific section:

C Language: K&R C, ANSI C89, ISO C90, ISO C94 (C89+AMD1), ISO
C99 (+TC1, TC2, TC3).
Objective-C Language: ObjC 1, ObjC 2, ObjC 2.1, plus
variants depending on base language.
C++ Language
Objective C++ Language
OpenCL C Language: v1.0, v1.1, v1.2, v2.0.

In addition to these base languages and their dialects, Clang supports a
 broad variety of language extensions, which are documented in the
corresponding language section. These extensions are provided to be
compatible with the GCC, Microsoft, and other popular compilers as well
as to
improve functionality through Clang-specific features. The Clang
driver and language features are intentionally designed to be as
compatible with
the GNU GCC compiler as reasonably possible, easing
 migration from GCC to Clang. In most cases, code “just works”.
 Clang also provides an
alternative driver, clang-cl, that is designed
to be compatible with the Visual C++ compiler, cl.exe.

In addition to language specific features, Clang has a variety of
 features that depend on what CPU architecture or operating system is
 being
compiled for. Please see the Target-Specific Features and
Limitations section for more details.

The rest of the introduction introduces some basic compiler
terminology that is used throughout this manual and
contains a basic introduction
to using Clang as a
command line compiler.

Terminology ¶

Front end, parser, backend, preprocessor, undefined behavior,
diagnostic, optimizer

Basic Usage ¶

Intro to how to use a C compiler for newbies.

compile + link compile then link debug info enabling optimizations
picking a language to use, defaults to C11 by default. Autosenses based
on
extension. using a makefile

Command Line Options ¶

This section is generally an index into other sections. It does not go
into depth on the ones that are covered by other sections. However, the
first
part introduces the language selection and other high level
options like -c, -g, etc.

Options to Control Error and Warning Messages ¶

-Werror ¶

Turn warnings into errors.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#c-for-opencl
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#constructing-and-destroying-global-objects
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#target-specific-features-and-limitations
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cpu-architectures-features-and-limitations
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#x86
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#arm
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#powerpc
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#other-platforms
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#operating-system-features-and-limitations
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#darwin-macos
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#windows
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cygwin
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#mingw32
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#mingw-w64
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#clang-cl
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id9
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#the-clang-option
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#the-zc-dllexportinlines-option
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#the-fallback-option
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id10
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#introduction
https://clang.llvm.org/
https://llvm.org/
https://releases.llvm.org/10.0.0/tools/clang/docs/InternalsManual.html
https://clang-analyzer.llvm.org/
https://releases.llvm.org/10.0.0/tools/clang/docs/Toolchain.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#c
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#objc
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cxx
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#objcxx
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#c
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#objc
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cxx
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#objcxx
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#clang-cl
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#target-features
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#terminology
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#basicusage
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id11
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#terminology
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id12
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#basic-usage
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id13
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#command-line-options
https://releases.llvm.org/10.0.0/tools/clang/docs/CommandGuide/clang.html#cmdoption-c
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-g
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id14
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#options-to-control-error-and-warning-messages
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-werror

-Werror=foo

Turn warning “foo” into an error.

-Wno-error=foo ¶

Turn warning “foo” into a warning even if -Werror is specified.

-Wfoo ¶

Enable warning “foo”.
See the diagnostics reference for a complete
list of the warning flags that can be specified in this way.

-Wno-foo ¶

Disable warning “foo”.

-w ¶

Disable all diagnostics.

-Weverything ¶

Enable all diagnostics.

-pedantic ¶

Warn on language extensions.

-pedantic-errors ¶

Error on language extensions.

-Wsystem-headers ¶

Enable warnings from system headers.

-ferror-limit=123 ¶

Stop emitting diagnostics after 123 errors have been produced. The default is
20, and the error limit can be disabled with -ferror-limit=0.

-ftemplate-backtrace-limit=123 ¶

Only emit up to 123 template instantiation notes within the template
instantiation backtrace for a single warning or error. The default is 10,
and
the limit can be disabled with -ftemplate-backtrace-limit=0.

Formatting of Diagnostics ¶

Clang aims to produce beautiful diagnostics by default, particularly for
new users that first come to Clang. However, different people have
different
preferences, and sometimes Clang is driven not by a human,
but by a program that wants consistent and easily parsable output. For
these cases,
Clang provides a wide range of options to control the exact
output format of the diagnostics that it generates.

-f[no-]show-column

Print column number in diagnostic.

This option, which defaults to on, controls whether or not Clang
prints the column number of a diagnostic. For example, when this is
enabled,
Clang will print something like:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]

#endif bad

 ^

 //

When this is disabled, Clang will print “test.c:28: warning…” with
no column number.

The printed column numbers count bytes from the beginning of the
line; take care if your source contains multibyte characters.

-f[no-]show-source-location

Print source file/line/column information in diagnostic.

This option, which defaults to on, controls whether or not Clang
prints the filename, line number and column number of a diagnostic.
 For
example, when this is enabled, Clang will print something like:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]

#endif bad

 ^

 //

When this is disabled, Clang will not print the “test.c:28:8: ”
part.

-f[no-]caret-diagnostics

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-wno-error
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-werror
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-wfoo
https://releases.llvm.org/10.0.0/tools/clang/docs/DiagnosticsReference.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-wno-foo
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-w
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-weverything
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#diagnostics-enable-everything
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-pedantic
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-pedantic-errors
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-wsystem-headers
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ferror-limit
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ftemplate-backtrace-limit
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id15
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#formatting-of-diagnostics

Print source line and ranges from source code in diagnostic.
This option, which defaults to on, controls whether or not Clang
prints the source
line, source ranges, and caret when emitting a
diagnostic. For example, when this is enabled, Clang will print
something like:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]

#endif bad

 ^

 //

-f[no-]color-diagnostics

This option, which defaults to on when a color-capable terminal is
detected, controls whether or not Clang prints diagnostics in color.

When this option is enabled, Clang will use colors to highlight
specific parts of the diagnostic, e.g.,

 test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]

 #endif bad

 ^

 //

When this is disabled, Clang will just print:

test.c:2:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]

#endif bad

 ^

 //

-fansi-escape-codes
Controls whether ANSI escape codes are used instead of the Windows Console
API to output colored diagnostics. This option is only used on
Windows and
defaults to off.

-fdiagnostics-format=clang/msvc/vi ¶

Changes diagnostic output format to better match IDEs and command line tools.

This option controls the output format of the filename, line number,
and column printed in diagnostic messages. The options, and their
affect
on formatting a simple conversion diagnostic, follow:

clang (default)

t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int'

msvc

t.c(3,11) : warning: conversion specifies type 'char *' but the argument has type 'int'

vi

t.c +3:11: warning: conversion specifies type 'char *' but the argument has type 'int'

-f[no-]diagnostics-show-option

Enable [-Woption] information in diagnostic line.

This option, which defaults to on, controls whether or not Clang
prints the associated warning group
option name when outputting a warning
diagnostic. For example, in
this output:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]

#endif bad

 ^

 //

Passing -fno-diagnostics-show-option will prevent Clang from
 printing the [-Wextra-tokens] information in
 the diagnostic. This
information tells you the flag needed to enable
 or disable the diagnostic, either from the command line or through
 #pragma GCC
diagnostic.

-fdiagnostics-show-category=none/id/name ¶

Enable printing category information in diagnostic line.

This option, which defaults to “none”, controls whether or not Clang
prints the category associated with a diagnostic when emitting it.
Each
diagnostic may or many not have an associated category, if it
has one, it is listed in the diagnostic categorization field of the
diagnostic line (in
the []’s).

For example, a format string warning will produce these three
renditions based on the setting of this option:

t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat]

t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,1]

t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,Format String]

This category can be used by clients that want to group diagnostics
by category, so it should be a high level category. We want dozens
of
these, not hundreds or thousands of them.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fdiagnostics-format
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cl-diag-warning-groups
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-wextra-tokens
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#pragma-gcc-diagnostic
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fdiagnostics-show-category

-f[no-]save-optimization-record[=<format>] ¶

Enable optimization remarks during compilation and write them to a separate
file.

This option, which defaults to off, controls whether Clang writes
optimization reports to a separate file. By recording diagnostics in a file,
users
can parse or sort the remarks in a convenient way.

By default, the serialization format is YAML.

The supported serialization formats are:

-fsave-optimization-record=yaml: A structured YAML format.

-fsave-optimization-record=bitstream: A binary format based on LLVM
Bitstream.

The output file is controlled by -foptimization-record-file.

In the absence of an explicit output file, the file is chosen using the
following scheme:

<base>.opt.<format>

where <base> is based on the output file of the compilation (whether
 it’s explicitly specified through -o or not) when used with -c or -S.
 For
example:

clang -fsave-optimization-record -c in.c -o out.o will generate
out.opt.yaml
clang -fsave-optimization-record -c in.c `` will generate
``in.opt.yaml

When targeting (Thin)LTO, the base is derived from the output filename, and
the extension is not dropped.

When targeting ThinLTO, the following scheme is used:

<base>.opt.<format>.thin.<num>.<format>

Darwin-only: when used for generating a linked binary from a source file
(through an intermediate object file), the driver will invoke cc1 to
generate a temporary object file. The temporary remark file will be emitted
next to the object file, which will then be picked up by dsymutil
and
emitted in the .dSYM bundle. This is available for all formats except YAML.

For example:

clang -fsave-optimization-record=bitstream in.c -o out will generate

/var/folders/43/9y164hh52tv_2nrdxrj31nyw0000gn/T/a-9be59b.o

/var/folders/43/9y164hh52tv_2nrdxrj31nyw0000gn/T/a-9be59b.opt.bitstream

out

out.dSYM/Contents/Resources/Remarks/out

Darwin-only: compiling for multiple architectures will use the following
scheme:

<base>-<arch>.opt.<format>

Note that this is incompatible with passing the
-foptimization-record-file option.

-foptimization-record-file

Control the file to which optimization reports are written. This implies
-fsave-optimization-record.

On Darwin platforms, this is incompatible with passing multiple
-arch <arch> options.

-foptimization-record-passes

Only include passes which match a specified regular expression.

When optimization reports are being output (see
-fsave-optimization-record), this
option controls the passes that will be included in the
final report.

If this option is not used, all the passes are included in the optimization
record.

-f[no-]diagnostics-show-hotness

Enable profile hotness information in diagnostic line.

This option controls whether Clang prints the profile hotness associated
 with diagnostics in the presence of profile-guided optimization
information.
This is currently supported with optimization remarks (see
Options to Emit Optimization Reports). The hotness information
allows users to focus on the hot optimization remarks that are likely to be
more relevant for run-time performance.

For example, in this output, the block containing the callsite of foo was
executed 3000 times according to the profile data:

s.c:7:10: remark: foo inlined into bar (hotness: 3000) [-Rpass-analysis=inline]

 sum += foo(x, x - 2);

 ^

This option is implied when
-fsave-optimization-record is used.
Otherwise, it defaults to off.

-fdiagnostics-hotness-threshold

Prevent optimization remarks from being output if they do not have at least
this hotness value.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-f-no-save-optimization-record
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-foptimization-record-file
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-foptimization-record-file
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fsave-optimization-record
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fsave-optimization-record
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#rpass
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fsave-optimization-record

This option, which defaults to zero, controls the minimum hotness an
optimization remark would need in order to be output by Clang. This is
currently supported with optimization remarks (see Options to Emit
Optimization Reports) when profile hotness information in
diagnostics
is enabled (see
-fdiagnostics-show-hotness).

-f[no-]diagnostics-fixit-info

Enable “FixIt” information in the diagnostics output.

This option, which defaults to on, controls whether or not Clang
prints the information on how to fix a specific diagnostic
underneath it when it
knows. For example, in this output:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]

#endif bad

 ^

 //

Passing -fno-diagnostics-fixit-info will prevent Clang from
printing the “//” line at the end of the message. This information
 is useful for
users who may not understand what is wrong, but can be
confusing for machine parsing.

-fdiagnostics-print-source-range-info

Print machine parsable information about source ranges.
 This option makes Clang print information about source ranges in a machine
parsable format after the file/line/column number information. The
 information is a simple sequence of brace enclosed ranges, where each
range
lists the start and end line/column locations. For example, in this output:

exprs.c:47:15:{47:8-47:14}{47:17-47:24}: error: invalid operands to binary expression ('int *' and '_Complex float')

 P = (P-42) + Gamma*4;

       ~~~~~~ ^ ~~~~~~~


The {}’s are generated by -fdiagnostics-print-source-range-info.

The printed column numbers count bytes from the beginning of the
line; take care if your source contains multibyte characters.

-fdiagnostics-parseable-fixits ¶

Print Fix-Its in a machine parseable form.

This option makes Clang print available Fix-Its in a machine
parseable format at the end of diagnostics. The following example
illustrates the
format:

fix-it:"t.cpp":{7:25-7:29}:"Gamma"


The range printed is a half-open range, so in this example the
characters at column 25 up to but not including column 29 on line 7
in t.cpp
should be replaced with the string “Gamma”. Either the
 range or the replacement string may be empty (representing strict
 insertions and
strict erasures, respectively). Both the file name
and the insertion string escape backslash (as “\”), tabs (as
“\t”), newlines (as “\n”), double
quotes(as “"”) and
non-printable characters (as octal “\xxx”).

The printed column numbers count bytes from the beginning of the
line; take care if your source contains multibyte characters.

-fno-elide-type ¶

Turns off elision in template type printing.

The default for template type printing is to elide as many template
 arguments as possible, removing those which are the same in both
template types, leaving only the differences. Adding this flag will
print all the template arguments. If supported by the terminal,
highlighting
will still appear on differing arguments.

Default:

t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<[...], map<float, [...]>>>' to 'vector<map<[...], map<double, [...]>>>' for 

-fno-elide-type:

t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<int, map<float, int>>>' to 'vector<map<int, map<double, int>>>' for 1st argu

-fdiagnostics-show-template-tree ¶

Template type diffing prints a text tree.

For diffing large templated types, this option will cause Clang to
display the templates as an indented text tree, one argument per
line, with
differences marked inline. This is compatible with
-fno-elide-type.

Default:

t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<[...], map<float, [...]>>>' to 'vector<map<[...], map<double, [...]>>>' for 

With -fdiagnostics-show-template-tree:

t.cc:4:5: note: candidate function not viable: no known conversion for 1st argument;

  vector<


https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#rpass
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fdiagnostics-show-hotness
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fdiagnostics-parseable-fixits
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fno-elide-type
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fdiagnostics-show-template-tree
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fdiagnostics-show-template-tree


    map<

      [...],

      map<

        [float != double],

        [...]>>>


Individual Warning Groups ¶

TODO: Generate this from tblgen. Define one anchor per warning group.

-Wextra-tokens ¶

Warn about excess tokens at the end of a preprocessor directive.

This option, which defaults to on, enables warnings about extra
tokens at the end of preprocessor directives. For example:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]

#endif bad

       ^


These extra tokens are not strictly conforming, and are usually best
handled by commenting them out.

-Wambiguous-member-template ¶

Warn about unqualified uses of a member template whose name resolves to
another template at the location of the use.

This option, which defaults to on, enables a warning in the
following code:

template<typename T> struct set{};

template<typename T> struct trait { typedef const T& type; };

struct Value {

  template<typename T> void set(typename trait<T>::type value) {}

};

void foo() {

  Value v;

  v.set<double>(3.2);

}


C++ [basic.lookup.classref] requires this to be an error, but,
 because it’s hard to work around, Clang downgrades it to a warning
 as an
extension.

-Wbind-to-temporary-copy ¶

Warn about an unusable copy constructor when binding a reference to a
temporary.

This option enables warnings about binding a
 reference to a temporary when the temporary doesn’t have a usable
 copy constructor. For
example:

struct NonCopyable {

  NonCopyable();

private:

  NonCopyable(const NonCopyable&);
};

void foo(const NonCopyable&);

void bar() {

  foo(NonCopyable());  // Disallowed in C++98; allowed in C++11.

}


struct NonCopyable2 {

  NonCopyable2();

  NonCopyable2(NonCopyable2&);

};

void foo(const NonCopyable2&);

void bar() {

  foo(NonCopyable2());  // Disallowed in C++98; allowed in C++11.

}


Note that if NonCopyable2::NonCopyable2() has a default argument
whose instantiation produces a compile error, that error will still
be a hard error
in C++98 mode even if this warning is turned off.

Options to Control Clang Crash Diagnostics ¶

As unbelievable as it may sound, Clang does crash from time to time.
Generally, this only occurs to those living on the bleeding
edge. Clang goes
to great
 lengths to assist you in filing a bug report. Specifically, Clang
generates preprocessed source file(s) and associated run script(s) upon
a
crash. These files should be attached to a bug report to ease
reproducibility of the failure. Below are the command line options to
control the crash
diagnostics.

-fno-crash-diagnostics ¶

Disable auto-generation of preprocessed source files during a clang crash.

The -fno-crash-diagnostics flag can be helpful for speeding the process
of generating a delta reduced test case.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id16
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#individual-warning-groups
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-wextra-tokens
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-wambiguous-member-template
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-wbind-to-temporary-copy
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id17
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#options-to-control-clang-crash-diagnostics
https://llvm.org/releases/download.html#svn
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fno-crash-diagnostics


Clang is also capable of generating preprocessed source file(s) and associated
 run script(s) even without a crash. This is specially useful when
trying to
generate a reproducer for warnings or errors while using modules.

-gen-reproducer ¶

Generates preprocessed source files, a reproducer script and if relevant, a
cache containing: built module pcm’s and all headers needed to
rebuilt the
same modules.

Options to Emit Optimization Reports ¶

Optimization reports trace, at a high-level, all the major decisions
done by compiler transformations. For instance, when the inliner
decides to inline
function foo() into bar(), or the loop unroller
decides to unroll a loop N times, or the vectorizer decides to
vectorize a loop body.

Clang offers a family of flags which the optimizers can use to emit
a diagnostic in three cases:

1. When the pass makes a transformation (-Rpass).
2. When the pass fails to make a transformation (-Rpass-missed).
3. When the pass determines whether or not to make a transformation
(-Rpass-analysis).

NOTE: Although the discussion below focuses on -Rpass, the exact
same options apply to -Rpass-missed and -Rpass-analysis.

Since there are dozens of passes inside the compiler, each of these flags
take a regular expression that identifies the name of the pass which should
emit the associated diagnostic. For example, to get a report from the inliner,
compile the code with:

$ clang -O2 -Rpass=inline code.cc -o code

code.cc:4:25: remark: foo inlined into bar [-Rpass=inline]

int bar(int j) { return foo(j, j - 2); }

                        ^


Note that remarks from the inliner are identified with [-Rpass=inline].
To request a report from every optimization pass, you should use
-Rpass=.*
(in fact, you can use any valid POSIX regular
 expression). However, do not expect a report from every transformation
 made by the compiler.
Optimization remarks do not really make sense
outside of the major transformations (e.g., inlining, vectorization,
loop optimizations) and not every
optimization pass supports this
feature.

Note that when using profile-guided optimization information, profile hotness
information can be included in the remarks (see
-fdiagnostics-show-
hotness).

Current limitations ¶

1. Optimization remarks that refer to function names will display the
mangled name of the function. Since these remarks are emitted by the
back
end of the compiler, it does not know anything about the input
language, nor its mangling rules.

2. Some source locations are not displayed correctly. The front end has
a more detailed source location tracking than the locations included
in the
debug info (e.g., the front end can locate code inside macro
expansions). However, the locations used by -Rpass are
translated from debug
annotations. That translation can be lossy,
which results in some remarks having no location information.

Other Options ¶

Clang options that don’t fit neatly into other categories.

-fgnuc-version= ¶

This flag controls the value of __GNUC__ and related macros. This flag
does not enable or disable any GCC extensions implemented in Clang.
Setting
the version to zero causes Clang to leave __GNUC__ and other
GNU-namespaced macros, such as __GXX_WEAK__, undefined.

-MV ¶

When emitting a dependency file, use formatting conventions appropriate
for NMake or Jom. Ignored unless another option causes Clang to
emit a
dependency file.

When Clang emits a dependency file (e.g., you supplied the -M option)
most filenames can be written to the file without any special formatting.
Different Make tools will treat different sets of characters as “special”
and use different conventions for telling the Make tool that the character
is
actually part of the filename. Normally Clang uses backslash to “escape”
a special character, which is the convention used by GNU Make. The -MV
option tells Clang to put double-quotes around the entire filename, which
is the convention used by NMake and Jom.

Configuration files ¶

Configuration files group command-line options and allow all of them to be
specified just by referencing the configuration file. They may be used,
for
example, to collect options required to tune compilation for particular
target, such as -L, -I, -l, –sysroot, codegen options, etc.

The command line option –config can be used to specify configuration
file in a Clang invocation. For example:

clang --config /home/user/cfgs/testing.txt

clang --config debug.cfg


If the provided argument contains a directory separator, it is considered as
a file path, and options are read from that file. Otherwise the argument
is
treated as a file name and is searched for sequentially in the directories:

user directory,
system directory,

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-gen-reproducer
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id18
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#options-to-emit-optimization-reports
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fdiagnostics-show-hotness
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id19
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#current-limitations
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id20
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#other-options
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fgnuc-version
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-mv
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id21
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#configuration-files


the directory where Clang executable resides.

Both user and system directories for configuration files are specified during
clang build using CMake parameters, CLANG_CONFIG_FILE_USER_DIR
and
CLANG_CONFIG_FILE_SYSTEM_DIR respectively. The first file found is used. It is
an error if the required file cannot be found.

Another way to specify a configuration file is to encode it in executable name.
For example, if the Clang executable is named armv7l-clang (it may
be a
symbolic link to clang), then Clang will search for file armv7l.cfg in the
directory where Clang resides.

If a driver mode is specified in invocation, Clang tries to find a file specific
 for the specified mode. For example, if the executable file is named
x86_64-clang-cl, Clang first looks for x86_64-cl.cfg and if it is not found,
looks for x86_64.cfg.

If the command line contains options that effectively change target architecture
(these are -m32, -EL, and some others) and the configuration file
starts with an
architecture name, Clang tries to load the configuration file for the effective
architecture. For example, invocation:

x86_64-clang -m32 abc.c


causes Clang search for a file i368.cfg first, and if no such file is found,
Clang looks for the file x86_64.cfg.

The configuration file consists of command-line options specified on one or
more lines. Lines composed of whitespace characters only are ignored
as well as
lines in which the first non-blank character is #. Long options may be split
between several lines by a trailing backslash. Here is example
of a
configuration file:

# Several options on line

-c --target=x86_64-unknown-linux-gnu



# Long option split between lines

-I/usr/lib/gcc/x86_64-linux-gnu/5.4.0/../../../../\

include/c++/5.4.0



# other config files may be included

@linux.options


Files included by @file directives in configuration files are resolved
relative to the including file. For example, if a configuration file
~/.llvm/target.cfg
contains the directive @os/linux.opts, the file
linux.opts is searched for in the directory ~/.llvm/os.

Language and Target-Independent Features ¶

Controlling Errors and Warnings ¶

Clang provides a number of ways to control which code constructs cause
it to emit errors and warning messages, and how they are displayed to
the
console.

Controlling How Clang Displays Diagnostics ¶

When Clang emits a diagnostic, it includes rich information in the
output, and gives you fine-grain control over which information is
printed. Clang
has the ability to print this information, and these are
the options that control it:

1. A file/line/column indicator that shows exactly where the diagnostic
occurs in your code [-fshow-column,
-fshow-source-location].
2. A categorization of the diagnostic as a note, warning, error, or
fatal error.
3. A text string that describes what the problem is.
4. An option that indicates how to control the diagnostic (for
diagnostics that support it)
[-fdiagnostics-show-option].
5. A high-level category for the diagnostic
for clients that want to group diagnostics by class (for diagnostics
that support it)
[-fdiagnostics-

show-category].
6. The line of source code that the issue occurs on, along with a caret
and ranges that indicate the important locations
[-fcaret-diagnostics].
7. “FixIt” information, which is a concise explanation of how to fix the
problem (when Clang is certain it knows)
[-fdiagnostics-fixit-info].
8. A machine-parsable representation of the ranges involved (off by
default)
[-fdiagnostics-print-source-range-info].

For more information please see Formatting of
Diagnostics.

Diagnostic Mappings ¶

All diagnostics are mapped into one of these 6 classes:

Ignored
Note
Remark
Warning
Error
Fatal

Diagnostic Categories ¶

Though not shown by default, diagnostics may each be associated with a
high-level category. This category is intended to make it possible to
triage
builds that produce a large number of errors or warnings in a
grouped way.

Categories are not shown by default, but they can be turned on with the
-fdiagnostics-show-category option.
When set to “name”, the category is
printed textually in the
diagnostic output. When it is set to “id”, a category number is
printed. The mapping of category names to category id’s can
be obtained
by running ‘clang   --print-diagnostic-categories’.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id22
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#language-and-target-independent-features
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id23
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-errors-and-warnings
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id24
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-how-clang-displays-diagnostics
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fshow-column
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fshow-source-location
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fdiagnostics-show-option
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#diagnostics-categories
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fdiagnostics-show-category
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fcaret-diagnostics
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fdiagnostics-fixit-info
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fdiagnostics-print-source-range-info
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cl-diag-formatting
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id25
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#diagnostic-mappings
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id26
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#diagnostic-categories
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opt-fdiagnostics-show-category


Controlling Diagnostics via Command Line Flags ¶

TODO: -W flags, -pedantic, etc

Controlling Diagnostics via Pragmas ¶

Clang can also control what diagnostics are enabled through the use of
pragmas in the source code. This is useful for turning off specific
warnings in
a section of source code. Clang supports GCC’s pragma for
compatibility with existing source code, as well as several extensions.

The pragma may control any warning that can be used from the command
 line. Warnings may be set to ignored, warning, error, or fatal. The
following example code will tell Clang or GCC to ignore the -Wall
warnings:

#pragma GCC diagnostic ignored "-Wall"


In addition to all of the functionality provided by GCC’s pragma, Clang
also allows you to push and pop the current warning state. This is
particularly
useful when writing a header file that will be compiled by
other people, because you don’t know what warning flags they build with.

In the below example -Wextra-tokens is ignored for only a single line
of code, after which the diagnostics return to whatever state had previously
existed.

#if foo

#endif foo // warning: extra tokens at end of #endif directive



#pragma clang diagnostic push

#pragma clang diagnostic ignored "-Wextra-tokens"



#if foo

#endif foo // no warning



#pragma clang diagnostic pop


The push and pop pragmas will save and restore the full diagnostic state
of the compiler, regardless of how it was set. That means that it is
possible
to use push and pop around GCC compatible diagnostics and Clang
will push and pop them appropriately, while GCC will ignore the pushes
and
pops as unknown pragmas. It should be noted that while Clang
supports the GCC pragma, Clang and GCC do not support the exact same set
of
warnings, so even when using GCC compatible #pragmas there is no
guarantee that they will have identical behaviour on both compilers.

In addition to controlling warnings and errors generated by the compiler, it is
possible to generate custom warning and error messages through the
following
pragmas:

// The following will produce warning messages

#pragma message "some diagnostic message"

#pragma GCC warning "TODO: replace deprecated feature"



// The following will produce an error message

#pragma GCC error "Not supported"


These pragmas operate similarly to the #warning and #error preprocessor
 directives, except that they may also be embedded into preprocessor
macros via
the C99 _Pragma operator, for example:

#define STR(X) #X

#define DEFER(M,...) M(__VA_ARGS__)

#define CUSTOM_ERROR(X) _Pragma(STR(GCC error(X " at line " DEFER(STR,__LINE__))))



CUSTOM_ERROR("Feature not available");


Controlling Diagnostics in System Headers ¶

Warnings are suppressed when they occur in system headers. By default,
an included file is treated as a system header if it is found in an
include
path specified by -isystem, but this can be overridden in
several ways.

The system_header pragma can be used to mark the current file as
being a system header. No warnings will be produced from the location of
 the
pragma onwards within the same file.

#if foo

#endif foo // warning: extra tokens at end of #endif directive



#pragma clang system_header



#if foo

#endif foo // no warning


The –system-header-prefix= and –no-system-header-prefix=
command-line arguments can be used to override whether subsets of an include
path
are treated as system headers. When the name in a #include directive
 is found within a header search path and starts with a system prefix, the
header is treated as a system header. The last prefix on the
 command-line which matches the specified header name takes precedence.
 For
instance:

$ clang -Ifoo -isystem bar --system-header-prefix=x/ \

    --no-system-header-prefix=x/y/


https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id27
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-diagnostics-via-command-line-flags
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id28
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-diagnostics-via-pragmas
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-wextra-tokens
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id29
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-diagnostics-in-system-headers


Here, #include "x/a.h" is treated as including a system header, even
if the header is found in foo, and #include "x/y/b.h" is treated
as not including a
system header, even if the header is found in
bar.

A #include directive which finds a file relative to the current
directory is treated as including a system header if the including file
 is treated as a
system header.

Enabling All Diagnostics ¶

In addition to the traditional -W flags, one can enable all diagnostics
by passing -Weverything. This works as expected with
-Werror, and also includes
the warnings from -pedantic. Some
diagnostics contradict each other, therefore, users of -Weverything
often disable many diagnostics such as -Wno-
c++98-compat and -Wno-c++-compat
because they contradict recent C++ standards.

Since -Weverything enables every diagnostic, we generally don’t
 recommend using it. -Wall -Wextra are a better choice for most projects.
Using -
Weverything means that updating your compiler is more difficult
because you’re exposed to experimental diagnostics which might be of lower
quality
than the default ones. If you do use -Weverything then we
advise that you address all new compiler diagnostics as they get added to Clang,
either by
fixing everything they find or explicitly disabling that diagnostic
with its corresponding Wno- option.

Note that when combined with -w (which disables all warnings),
disabling all warnings wins.

Controlling Static Analyzer Diagnostics ¶

While not strictly part of the compiler, the diagnostics from Clang’s
static analyzer can also be
influenced by the user via changes to the source
code. See the available
annotations and the
analyzer’s FAQ
page for more
information.

Precompiled Headers ¶

Precompiled headers
 are a general approach employed by many compilers to reduce compilation
 time. The underlying motivation of the
approach is that it is common for
the same (and often large) header files to be included by multiple
source files. Consequently, compile times can
often be greatly improved
 by caching some of the (redundant) work done by a compiler to process
 headers. Precompiled header files, which
represent one of many ways to
 implement this optimization, are literally files that represent an
on-disk cache that contains the vital information
necessary to reduce
 some of the work needed to process a corresponding header file. While
 details of precompiled headers vary between
compilers, precompiled
headers have been shown to be highly effective at speeding up program
compilation on systems with very large system
headers (e.g., macOS).

Generating a PCH File ¶

To generate a PCH file using Clang, one invokes Clang with the
-x <language>-header option. This mirrors the interface in GCC
for generating PCH
files:

$ gcc -x c-header test.h -o test.h.gch

$ clang -x c-header test.h -o test.h.pch


Using a PCH File ¶

A PCH file can then be used as a prefix header when a -include
option is passed to clang:

$ clang -include test.h test.c -o test


The clang driver will first check if a PCH file for test.h is
available; if so, the contents of test.h (and the files it includes)
will be processed from the PCH
file. Otherwise, Clang falls back to
directly processing the content of test.h. This mirrors the behavior
of GCC.

Note

Clang does not automatically use PCH files for headers that are directly
included within a source file. For example:

$ clang -x c-header test.h -o test.h.pch

$ cat test.c

#include "test.h"

$ clang test.c -o test


In this example, clang will not automatically use the PCH file for
 test.h since test.h was included directly in the source file and not
specified on the command line using -include.

Relocatable PCH Files ¶

It is sometimes necessary to build a precompiled header from headers
that are not yet in their final, installed locations. For example, one
might
build a precompiled header within the build tree that is then
 meant to be installed alongside the headers. Clang permits the creation
 of
“relocatable” precompiled headers, which are built with a given path
(into the build directory) and can later be used from an installed
location.

To build a relocatable precompiled header, place your headers into a
subdirectory whose structure mimics the installed location. For example,
if you
want to build a precompiled header for the header mylib.h
that will be installed into /usr/include, create a subdirectory
build/usr/include and place the

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id30
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#enabling-all-diagnostics
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-weverything
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-werror
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-pedantic
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-weverything
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-weverything
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-weverything
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-weverything
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-w
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id31
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-static-analyzer-diagnostics
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/annotations.html
https://clang-analyzer.llvm.org/faq.html#exclude_code
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id32
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#precompiled-headers
https://en.wikipedia.org/wiki/Precompiled_header
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id33
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#generating-a-pch-file
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id34
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#using-a-pch-file
https://releases.llvm.org/10.0.0/tools/clang/docs/CommandGuide/clang.html#cmdoption-include
https://releases.llvm.org/10.0.0/tools/clang/docs/CommandGuide/clang.html#cmdoption-include
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id35
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#relocatable-pch-files


header mylib.h into that
subdirectory. If mylib.h depends on other headers, then they can be
stored within build/usr/include in a way that mimics the
installed
location.

Building a relocatable precompiled header requires two additional
arguments. First, pass the --relocatable-pch flag to indicate that
the resulting PCH
file should be relocatable. Second, pass
-isysroot /path/to/build, which makes all includes for your library
relative to the build directory. For example:

# clang -x c-header --relocatable-pch -isysroot /path/to/build /path/to/build/mylib.h mylib.h.pch


When loading the relocatable PCH file, the various headers used in the
PCH file are found from the system header root. For example, mylib.h
can be
found in /usr/include/mylib.h. If the headers are installed
in some other system root, the -isysroot option can be used provide
a different system root
from which the headers will be based. For
 example, -isysroot /Developer/SDKs/MacOSX10.4u.sdk will look for
 mylib.h in
/Developer/SDKs/MacOSX10.4u.sdk/usr/include/mylib.h.

Relocatable precompiled headers are intended to be used in a limited
number of cases where the compilation environment is tightly controlled
and
the precompiled header cannot be generated after headers have been
installed.

Controlling Floating Point Behavior ¶

Clang provides a number of ways to control floating point behavior. The options
are listed below.

-ffast-math ¶

Enable fast-math mode. This option lets the
compiler make aggressive, potentially-lossy assumptions about
floating-point math.
These include:

Floating-point math obeys regular algebraic rules for real numbers (e.g.
+ and * are associative, x/y == x * (1/y), and
(a + b) * c
== a * c + b * c),
Operands to floating-point operations are not equal to NaN and
Inf, and
+0 and -0 are interchangeable.

-ffast-math also defines the __FAST_MATH__ preprocessor
macro. Some math libraries recognize this macro and change their behavior.
With the exception of -ffp-contract=fast, using any of the options
below to disable any of the individual optimizations in -ffast-math
will cause __FAST_MATH__ to no longer be set.

This option implies:

-fno-honor-infinities

-fno-honor-nans

-fno-math-errno

-ffinite-math

-fassociative-math

-freciprocal-math

-fno-signed-zeros

-fno-trapping-math

-ffp-contract=fast

-fdenormal-fp-math=<value> ¶

Select which denormal numbers the code is permitted to require.

Valid values are:

ieee - IEEE 754 denormal numbers
preserve-sign - the sign of a flushed-to-zero number is preserved in the sign of 0
positive-zero - denormals are flushed to positive zero

Defaults to ieee.

-f[no-]strict-float-cast-overflow

When a floating-point value is not representable in a destination integer
type, the code has undefined behavior according to the
language standard.
By default, Clang will not guarantee any particular result in that case.
With the ‘no-strict’ option, Clang attempts to
match the overflowing behavior
of the target’s native float-to-int conversion instructions.

-f[no-]math-errno

Require math functions to indicate errors by setting errno.
The default varies by ToolChain. -fno-math-errno allows optimizations
that might
cause standard C math functions to not set errno.
For example, on some systems, the math function sqrt is specified
as setting errno to
EDOM when the input is negative. On these
systems, the compiler cannot normally optimize a call to sqrt to use
inline code (e.g. the x86
sqrtsd instruction) without additional
checking to ensure that errno is set appropriately.
-fno-math-errno permits these transformations.

On some targets, math library functions never set errno, and so
-fno-math-errno is the default. This includes most BSD-derived
systems,
including Darwin.

-f[no-]trapping-math

Control floating point exception behavior. -fno-trapping-math allows optimizations that assume that floating point operations cannot
generate traps such as divide-by-zero, overflow and underflow.

The option -ftrapping-math behaves identically to -ffp-exception-behavior=strict.
The option -fno-trapping-math behaves identically to -ffp-exception-behavior=ignore. This is the default.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id36
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-floating-point-behavior
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ffast-math
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fdenormal-fp-math


-ffp-contract=<value> ¶

Specify when the compiler is permitted to form fused floating-point
 operations, such as fused multiply-add (FMA). Fused operations are
permitted to produce more precise results than performing the same
operations separately.

The C standard permits intermediate floating-point results within an
expression to be computed with more precision than their type would
normally allow. This permits operation fusing, and Clang takes advantage
of this by default. This behavior can be controlled with the
FP_CONTRACT
pragma. Please refer to the pragma documentation for a
description of how the pragma interacts with this option.

Valid values are:

fast (everywhere)
on (according to FP_CONTRACT pragma, default)
off (never fuse)

-f[no-]honor-infinities

If both -fno-honor-infinities and -fno-honor-nans are used,
has the same effect as specifying -ffinite-math.

-f[no-]honor-nans

If both -fno-honor-infinities and -fno-honor-nans are used,
has the same effect as specifying -ffinite-math.

-f[no-]signed-zeros

Allow optimizations that ignore the sign of floating point zeros.
Defaults to -fno-signed-zeros.

-f[no-]associative-math

Allow floating point operations to be reassociated.
Defaults to -fno-associative-math.

-f[no-]reciprocal-math

Allow division operations to be transformed into multiplication by a
reciprocal. This can be significantly faster than an ordinary division
but can also have significantly less precision. Defaults to
-fno-reciprocal-math.

-f[no-]unsafe-math-optimizations

Allow unsafe floating-point optimizations. Also implies:

-fassociative-math

-freciprocal-math

-fno-signed-zeroes

-fno-trapping-math.

Defaults to -fno-unsafe-math-optimizations.

-f[no-]finite-math

Allow floating-point optimizations that assume arguments and results are
 not NaNs or +-Inf. This defines the __FINITE_MATH_ONLY__

preprocessor macro.
Also implies:

-fno-honor-infinities

-fno-honor-nans

Defaults to -fno-finite-math.

-f[no-]rounding-math

Force floating-point operations to honor the dynamically-set rounding mode by default.

The result of a floating-point operation often cannot be exactly represented in the result type and therefore must be rounded. IEEE 754 describes
different rounding modes that control how to perform this rounding, not all of which are supported by all implementations. C provides interfaces
(fesetround and fesetenv) for dynamically controlling the rounding mode, and while it also recommends certain conventions for changing the rounding
mode, these conventions are not typically enforced in the ABI. Since the rounding mode changes the numerical result of operations, the compiler
must understand something about it in order to optimize floating point operations.

Note that floating-point operations performed as part of constant initialization are formally performed prior to the start of the program and are
therefore not subject to the current rounding mode. This includes the initialization of global variables and local static variables. Floating-point
operations in these contexts will be rounded using FE_TONEAREST.

The option -fno-rounding-math allows the compiler to assume that the rounding mode is set to FE_TONEAREST. This is the default.
The option -frounding-math forces the compiler to honor the dynamically-set rounding mode. This prevents optimizations which might affect
results if the rounding mode changes or is different from the default; for example, it prevents floating-point operations from being reordered
across most calls and prevents constant-folding when the result is not exactly representable.

-ffp-model=<value> ¶

Specify floating point behavior. -ffp-model is an umbrella
option that encompasses functionality provided by other, single
purpose, floating point
options. Valid values are: precise, strict,
and fast.
Details:

precise Disables optimizations that are not value-safe on floating-point data, although FP contraction (FMA) is enabled (-ffp-contract=fast).
This is the default behavior.
strict Enables -frounding-math and -ffp-exception-behavior=strict, and disables contractions (FMA). All of the -ffast-math enablements are
disabled.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ffp-contract
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ffp-model


fast Behaves identically to specifying both -ffast-math and ffp-contract=fast

Note: If your command line specifies multiple instances
of the -ffp-model option, or if your command line option specifies
-ffp-model and later on
the command line selects a floating point
option that has the effect of negating part of the ffp-model that
has been selected, then the compiler
will issue a diagnostic warning
that the override has occurred.

-ffp-exception-behavior=<value> ¶

Specify the floating-point exception behavior.

Valid values are: ignore, maytrap, and strict.
The default value is ignore. Details:

ignore The compiler assumes that the exception status flags will not be read and that floating point exceptions will be masked.
maytrap The compiler avoids transformations that may raise exceptions that would not have been raised by the original code. Constant
folding performed by the compiler is exempt from this option.
strict The compiler ensures that all transformations strictly preserve the floating point exception semantics of the original code.

Controlling Code Generation ¶

Clang provides a number of ways to control code generation. The options
are listed below.

-f[no-]sanitize=check1,check2,…

Turn on runtime checks for various forms of undefined or suspicious
behavior.

This option controls whether Clang adds runtime checks for various
forms of undefined or suspicious behavior, and is disabled by
default. If a
check fails, a diagnostic message is produced at
runtime explaining the problem. The main checks are:

-fsanitize=address:
AddressSanitizer, a memory error
detector.

-fsanitize=thread: ThreadSanitizer, a data race detector.

-fsanitize=memory: MemorySanitizer,
a detector of uninitialized reads. Requires instrumentation of all
program code.

-fsanitize=undefined: UndefinedBehaviorSanitizer,
a fast and compatible undefined behavior checker.

-fsanitize=dataflow: DataFlowSanitizer, a general data
flow analysis.
-fsanitize=cfi: control flow integrity
checks. Requires -flto.
-fsanitize=safe-stack: safe stack
protection against stack-based memory corruption errors.

There are more fine-grained checks available: see
the list of specific kinds of
undefined behavior that can be detected and the list
of control
flow integrity schemes.

The -fsanitize= argument must also be provided when linking, in
order to link to the appropriate runtime library.

It is not possible to combine more than one of the -fsanitize=address,
-fsanitize=thread, and -fsanitize=memory checkers in the same
program.

-f[no-]sanitize-recover=check1,check2,…

-f[no-]sanitize-recover=all

Controls which checks enabled by -fsanitize= flag are non-fatal.
If the check is fatal, program will halt after the first error
of this kind is
detected and error report is printed.

By default, non-fatal checks are those enabled by
UndefinedBehaviorSanitizer,
except for -fsanitize=return and -fsanitize=unreachable.
Some
sanitizers may not support recovery (or not support it by default
e.g. AddressSanitizer), and always crash the program after the
issue
is detected.

Note that the -fsanitize-trap flag has precedence over this flag.
This means that if a check has been configured to trap elsewhere on the
command line, or if the check traps by default, this flag will not have
any effect unless that sanitizer’s trapping behavior is disabled with
-fno-sanitize-trap.

For example, if a command line contains the flags -fsanitize=undefined
-fsanitize-trap=undefined, the flag -fsanitize-recover=alignment
will have
no effect on its own; it will need to be accompanied by
-fno-sanitize-trap=alignment.

-f[no-]sanitize-trap=check1,check2,…

Controls which checks enabled by the -fsanitize= flag trap. This
option is intended for use in cases where the sanitizer runtime cannot
be
used (for instance, when building libc or a kernel module), or where
the binary size increase caused by the sanitizer runtime is a concern.

This flag is only compatible with control flow integrity schemes and UndefinedBehaviorSanitizer
checks other than vptr. If this flag
is supplied together with -fsanitize=undefined, the vptr sanitizer
will be implicitly disabled.

This flag is enabled by default for sanitizers in the cfi group.

-fsanitize-blacklist=/path/to/blacklist/file ¶

Disable or modify sanitizer checks for objects (source files, functions,
variables, types) listed in the file. See
Sanitizer special case list for
file format description.

-fno-sanitize-blacklist ¶

Don’t use blacklist file, if it was specified earlier in the command line.

-f[no-]sanitize-coverage=[type,features,…]

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ffp-exception-behavior
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id37
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-code-generation
https://releases.llvm.org/10.0.0/tools/clang/docs/AddressSanitizer.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ThreadSanitizer.html
https://releases.llvm.org/10.0.0/tools/clang/docs/MemorySanitizer.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UndefinedBehaviorSanitizer.html
https://releases.llvm.org/10.0.0/tools/clang/docs/DataFlowSanitizer.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ControlFlowIntegrity.html
https://releases.llvm.org/10.0.0/tools/clang/docs/SafeStack.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UndefinedBehaviorSanitizer.html#ubsan-checks
https://releases.llvm.org/10.0.0/tools/clang/docs/ControlFlowIntegrity.html#cfi-schemes
https://releases.llvm.org/10.0.0/tools/clang/docs/UndefinedBehaviorSanitizer.html
https://releases.llvm.org/10.0.0/tools/clang/docs/AddressSanitizer.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ControlFlowIntegrity.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UndefinedBehaviorSanitizer.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fsanitize-blacklist
https://releases.llvm.org/10.0.0/tools/clang/docs/SanitizerSpecialCaseList.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fno-sanitize-blacklist


Enable simple code coverage in addition to certain sanitizers.
See SanitizerCoverage for more details.

-f[no-]sanitize-stats

Enable simple statistics gathering for the enabled sanitizers.
See SanitizerStats for more details.

-fsanitize-undefined-trap-on-error ¶

Deprecated alias for -fsanitize-trap=undefined.

-fsanitize-cfi-cross-dso ¶

Enable cross-DSO control flow integrity checks. This flag modifies
the behavior of sanitizers in the cfi group to allow checking
of cross-DSO
virtual and indirect calls.

-fsanitize-cfi-icall-generalize-pointers ¶

Generalize pointers in return and argument types in function type signatures
checked by Control Flow Integrity indirect call checking. See
Control Flow Integrity for more details.

-fstrict-vtable-pointers ¶

Enable optimizations based on the strict rules for overwriting polymorphic
C++ objects, i.e. the vptr is invariant during an object’s lifetime.
This enables better devirtualization. Turned off by default, because it is
still experimental.

-fwhole-program-vtables ¶

Enable whole-program vtable optimizations, such as single-implementation
devirtualization and virtual constant propagation, for classes with
hidden LTO visibility. Requires -flto.

-fforce-emit-vtables ¶

In order to improve devirtualization, forces emitting of vtables even in
modules where it isn’t necessary. It causes more inline virtual functions
to be emitted.

-fno-assume-sane-operator-new ¶

Don’t assume that the C++’s new operator is sane.

This option tells the compiler to do not assume that C++’s global
new operator will always return a pointer that does not alias any
other
pointer when the function returns.

-ftrap-function=[name] ¶

Instruct code generator to emit a function call to the specified
function name for __builtin_trap().

LLVM code generator translates __builtin_trap() to a trap
instruction if it is supported by the target ISA. Otherwise, the
builtin is translated into
a call to abort. If this option is
set, then the code generator will always lower the builtin to a call
to the specified function regardless of whether
the target ISA has a
trap instruction. This option is useful for environments (e.g.
deeply embedded) where a trap cannot be properly handled,
or when
some custom behavior is desired.

-ftls-model=[model] ¶

Select which TLS model to use.

Valid values are: global-dynamic, local-dynamic,
 initial-exec and local-exec. The default value is
 global-dynamic. The compiler may use a different
model if the
selected model is not supported by the target, or if a more
efficient model can be used. The TLS model can be overridden per
variable using the tls_model attribute.

-femulated-tls ¶

Select emulated TLS model, which overrides all -ftls-model choices.

In emulated TLS mode, all access to TLS variables are converted to
calls to __emutls_get_address in the runtime library.

-mhwdiv=[values] ¶

Select the ARM modes (arm or thumb) that support hardware division
instructions.

Valid values are: arm, thumb and arm,thumb.
This option is used to indicate which mode (arm or thumb) supports
hardware division instructions.
This only applies to the ARM
architecture.

-m[no-]crc ¶

Enable or disable CRC instructions.

This option is used to indicate whether CRC instructions are to
be generated. This only applies to the ARM architecture.

CRC instructions are enabled by default on ARMv8.

-mgeneral-regs-only ¶

Generate code which only uses the general purpose registers.

This option restricts the generated code to use general registers
only. This only applies to the AArch64 architecture.

https://releases.llvm.org/10.0.0/tools/clang/docs/SanitizerCoverage.html
https://releases.llvm.org/10.0.0/tools/clang/docs/SanitizerStats.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fsanitize-undefined-trap-on-error
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fsanitize-cfi-cross-dso
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fsanitize-cfi-icall-generalize-pointers
https://releases.llvm.org/10.0.0/tools/clang/docs/ControlFlowIntegrity.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fstrict-vtable-pointers
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fwhole-program-vtables
https://releases.llvm.org/10.0.0/tools/clang/docs/LTOVisibility.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fforce-emit-vtables
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fno-assume-sane-operator-new
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ftrap-function
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ftls-model
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-femulated-tls
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-mhwdiv
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-m-no-crc
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-mgeneral-regs-only


-mcompact-branches=[values] ¶

Control the usage of compact branches for MIPSR6.

Valid values are: never, optimal and always.
The default value is optimal which generates compact branches
when a delay slot cannot be filled.
never disables the usage of
compact branches and always generates compact branches whenever
possible.

-f[no-]max-type-align=[number]

Instruct the code generator to not enforce a higher alignment than the given
 number (of bytes) when accessing memory via an opaque
pointer or reference.
This cap is ignored when directly accessing a variable or when the pointee
type has an explicit “aligned” attribute.

The value should usually be determined by the properties of the system allocator.
Some builtin types, especially vector types, have very high
natural alignments;
when working with values of those types, Clang usually wants to use instructions
that take advantage of that alignment.
However, many system allocators do
not promise to return memory that is more than 8-byte or 16-byte-aligned. Use
this option to limit the
alignment that the compiler can assume for an arbitrary
pointer, which may point onto the heap.

This option does not affect the ABI alignment of types; the layout of structs and
unions and the value returned by the alignof operator remain
the same.

This option can be overridden on a case-by-case basis by putting an explicit
“aligned” alignment on a struct, union, or typedef. For example:

#include <immintrin.h>

// Make an aligned typedef of the AVX-512 16-int vector type.

typedef __v16si __aligned_v16si __attribute__((aligned(64)));



void initialize_vector(__aligned_v16si *v) {

  // The compiler may assume that ‘v’ is 64-byte aligned, regardless of the

  // value of -fmax-type-align.

}


-faddrsig, -fno-addrsig ¶

Controls whether Clang emits an address-significance table into the object
file. Address-significance tables allow linkers to implement safe
ICF without the false
positives that can result from other implementation techniques such as
relocation scanning. Address-significance tables
are enabled by default
on ELF targets when using the integrated assembler. This flag currently
only has an effect on ELF targets.

Profile Guided Optimization ¶

Profile information enables better optimization. For example, knowing that a
 branch is taken very frequently helps the compiler make better
decisions when
ordering basic blocks. Knowing that a function foo is called more
frequently than another function bar helps the inliner. Optimization
levels -O2 and above are recommended for use of profile guided optimization.

Clang supports profile guided optimization with two different kinds of
profiling. A sampling profiler can generate a profile with very low runtime
overhead, or you can build an instrumented version of the code that collects
more detailed profile information. Both kinds of profiles can provide
execution
counts for instructions in the code and information on branches taken and
function invocation.

Regardless of which kind of profiling you use, be careful to collect profiles
by running your code with inputs that are representative of the typical
behavior. Code that is not exercised in the profile will be optimized as if it
is unimportant, and the compiler may make poor optimization choices for
code
that is disproportionately used while profiling.

Differences Between Sampling and Instrumentation ¶

Although both techniques are used for similar purposes, there are important
differences between the two:

1. Profile data generated with one cannot be used by the other, and there is no
conversion tool that can convert one to the other. So, a profile
generated
via -fprofile-instr-generate must be used with -fprofile-instr-use.
Similarly, sampling profiles generated by external profilers must be
converted and used with -fprofile-sample-use.

2. Instrumentation profile data can be used for code coverage analysis and
optimization.
3. Sampling profiles can only be used for optimization. They cannot be used for
code coverage analysis. Although it would be technically possible to

use
sampling profiles for code coverage, sample-based profiles are too
coarse-grained for code coverage purposes; it would yield poor results.
4. Sampling profiles must be generated by an external tool. The profile
generated by that tool must then be converted into a format that can be

read
by LLVM. The section on sampling profilers describes one of the supported
sampling profile formats.

Using Sampling Profilers ¶

Sampling profilers are used to collect runtime information, such as
hardware counters, while your application executes. They are typically
 very
efficient and do not incur a large runtime overhead. The
sample data collected by the profiler can be used during compilation
to determine what the
most executed areas of the code are.

Using the data from a sample profiler requires some changes in the way
a program is built. Before the compiler can use profiling information,
the
code needs to execute under the profiler. The following is the
usual build cycle when using sample profilers for optimization:

1. Build the code with source line table information. You can use all the
usual build flags that you always build your application with. The only
requirement is that you add -gline-tables-only or -g to the
command line. This is important for the profiler to be able to map
instructions back to
source line locations.

$ clang++ -O2 -gline-tables-only code.cc -o code


https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-mcompact-branches
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-faddrsig
https://research.google.com/pubs/archive/36912.pdf
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id38
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#profile-guided-optimization
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id39
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#differences-between-sampling-and-instrumentation
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id40
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#using-sampling-profilers


2. Run the executable under a sampling profiler. The specific profiler
you use does not really matter, as long as its output can be converted
into the
format that the LLVM optimizer understands. Currently, there
exists a conversion tool for the Linux Perf profiler
(https://perf.wiki.kernel.org/),
so these examples assume that you
are using Linux Perf to profile your code.

$ perf record -b ./code


Note the use of the -b flag. This tells Perf to use the Last Branch
Record (LBR) to record call chains. While this is not strictly required,
it provides
better call information, which improves the accuracy of
the profile data.

3. Convert the collected profile data to LLVM’s sample profile format.
This is currently supported via the AutoFDO converter create_llvm_prof.
 It is
available at https://github.com/google/autofdo. Once built and
installed, you can convert the perf.data file to LLVM using
the command:

$ create_llvm_prof --binary=./code --out=code.prof


This will read perf.data and the binary file ./code and emit
the profile data in code.prof. Note that if you ran perf
without the -b flag, you need to use -
-use_lbr=false when
calling create_llvm_prof.

4. Build the code again using the collected profile. This step feeds
the profile back to the optimizers. This should result in a binary
that executes
faster than the original one. Note that you are not
required to build the code with the exact same arguments that you
used in the first step. The
only requirement is that you build the code
with -gline-tables-only and -fprofile-sample-use.

$ clang++ -O2 -gline-tables-only -fprofile-sample-use=code.prof code.cc -o code


Sample Profile Formats ¶

Since external profilers generate profile data in a variety of custom formats,
the data generated by the profiler must be converted into a format that
can be
read by the backend. LLVM supports three different sample profile formats:

1. ASCII text. This is the easiest one to generate. The file is divided into
sections, which correspond to each of the functions with profile
information.
The format is described below. It can also be generated from
the binary or gcov formats using the llvm-profdata tool.

2. Binary encoding. This uses a more efficient encoding that yields smaller
profile files. This is the format generated by the create_llvm_prof tool
in
https://github.com/google/autofdo.

3. GCC encoding. This is based on the gcov format, which is accepted by GCC. It
is only interesting in environments where GCC and Clang co-exist.
This
encoding is only generated by the create_gcov tool in
https://github.com/google/autofdo. It can be read by LLVM and
llvm-profdata, but it
cannot be generated by either.

If you are using Linux Perf to generate sampling profiles, you can use the
 conversion tool create_llvm_prof described in the previous section.
Otherwise, you will need to write a conversion tool that converts your
profiler’s native format into one of these three.

Sample Profile Text Format ¶

This section describes the ASCII text format for sampling profiles. It is,
arguably, the easiest one to generate. If you are interested in generating any
of the other two, consult the ProfileData library in LLVM’s source tree
(specifically, include/llvm/ProfileData/SampleProfReader.h).

function1:total_samples:total_head_samples

 offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]

 offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]

 ...

 offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]

 offsetA[.discriminator]: fnA:num_of_total_samples

  offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ]

  offsetA1[.discriminator]: number_of_samples [fn9:num fn10:num ... ]

  offsetB[.discriminator]: fnB:num_of_total_samples

   offsetB1[.discriminator]: number_of_samples [fn11:num fn12:num ... ]


This is a nested tree in which the indentation represents the nesting level
of the inline stack. There are no blank lines in the file. And the spacing
within a single line is fixed. Additional spaces will result in an error
while reading the file.

Any line starting with the ‘#’ character is completely ignored.

Inlined calls are represented with indentation. The Inline stack is a
 stack of source locations in which the top of the stack represents the
 leaf
function, and the bottom of the stack represents the actual
symbol to which the instruction belongs.

Function names must be mangled in order for the profile loader to
match them in the current translation unit. The two numbers in the
 function
header specify how many total samples were accumulated in the
 function (first number), and the total number of samples accumulated
 in the
prologue of the function (second number). This head sample
count provides an indicator of how frequently the function is invoked.

There are two types of lines in the function body.

Sampled line represents the profile information of a source location.
offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
Callsite line represents the profile information of an inlined callsite.
offsetA[.discriminator]: fnA:num_of_total_samples

Each sampled line may contain several items. Some are optional (marked
below):

1. Source line offset. This number represents the line number
in the function where the sample was collected. The line number is
always relative to
the line where symbol of the function is
defined. So, if the function has its header at line 280, the offset
13 is at line 293 in the file.

Note that this offset should never be a negative number. This could
happen in cases like macros. The debug machinery will register the
 line
number at the point of macro expansion. So, if the macro was
expanded in a line before the start of the function, the profile
converter should
emit a 0 as the offset (this means that the optimizers
will not be able to associate a meaningful weight to the instructions
in the macro).

2. [OPTIONAL] Discriminator. This is used if the sampled program
 was compiled with DWARF discriminator support
(http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
DWARF discriminators are unsigned integer values that allow the
compiler
to distinguish between multiple execution paths on the
same source line location.

https://perf.wiki.kernel.org/
https://github.com/google/autofdo
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id41
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#sample-profile-formats
https://github.com/google/autofdo
https://github.com/google/autofdo
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id42
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#sample-profile-text-format
http://wiki.dwarfstd.org/index.php?title=Path_Discriminators


For example, consider the line of code if (cond) foo(); else bar();.
 If the predicate cond is true 80% of the time, then the edge
 into function foo
should be considered to be taken most of the
time. But both calls to foo and bar are at the same source
line, so a sample count at that line is not
sufficient. The
compiler needs to know which part of that line is taken more
frequently.

This is what discriminators provide. In this case, the calls to
foo and bar will be at the same line, but will have
different discriminator values. This
allows the compiler to correctly
set edge weights into foo and bar.

3. Number of samples. This is an integer quantity representing the
number of samples collected by the profiler at this source
location.

4. [OPTIONAL] Potential call targets and samples. If present, this
line contains a call instruction. This models both direct and
number of samples. For
example,

130: 7  foo:3  bar:2  baz:7


The above means that at relative line offset 130 there is a call
 instruction that calls one of foo(), bar() and baz(),
with baz() being the relatively
more frequently called target.

As an example, consider a program with the call chain main -> foo -> bar.
When built with optimizations enabled, the compiler may inline the
calls to
bar and foo inside main. The generated profile
could then be something like this:

main:35504:0

1: _Z3foov:35504

  2: _Z32bari:31977

  1.1: 31977

2: 0


This profile indicates that there were a total of 35,504 samples
collected in main. All of those were at line 1 (the call to foo).
Of those, 31,977 were
spent inside the body of bar. The last line
of the profile (2: 0) corresponds to line 2 inside main. No
samples were collected there.

Profiling with Instrumentation ¶

Clang also supports profiling via instrumentation. This requires building a
special instrumented version of the code and has some runtime
overhead
during the profiling, but it provides more detailed results than a
sampling profiler. It also provides reproducible results, at least to the
extent that the
code behaves consistently across runs.

Here are the steps for using profile guided optimization with
instrumentation:

1. Build an instrumented version of the code by compiling and linking with the
-fprofile-instr-generate option.

$ clang++ -O2 -fprofile-instr-generate code.cc -o code


2. Run the instrumented executable with inputs that reflect the typical usage.
By default, the profile data will be written to a default.profraw file
in the
current directory. You can override that default by using option
-fprofile-instr-generate= or by setting the LLVM_PROFILE_FILE
environment variable to
specify an alternate file. If non-default file name
is specified by both the environment variable and the command line option,
the environment
variable takes precedence. The file name pattern specified
can include different modifiers: %p, %h, and %m.

Any instance of %p in that file name will be replaced by the process
ID, so that you can easily distinguish the profile output from multiple
runs.

$ LLVM_PROFILE_FILE="code-%p.profraw" ./code


The modifier %h can be used in scenarios where the same instrumented
binary is run in multiple different host machines dumping profile data
to a
shared network based storage. The %h specifier will be substituted
with the hostname so that profiles collected from different hosts do not
clobber
each other.

While the use of %p specifier can reduce the likelihood for the profiles
dumped from different processes to clobber each other, such clobbering can
still
happen because of the pid re-use by the OS. Another side-effect of using
%p is that the storage requirement for raw profile data files is greatly
increased. To avoid issues like this, the %m specifier can used in the profile
name. When this specifier is used, the profiler runtime will substitute %m
with a unique integer identifier associated with the instrumented binary. Additionally,
multiple raw profiles dumped from different processes that
share a file system (can be
on different hosts) will be automatically merged by the profiler runtime during the
dumping. If the program links in
multiple instrumented shared libraries, each library
will dump the profile data into its own profile data file (with its unique integer
id embedded in
the profile name). Note that the merging enabled by %m is for raw
profile data generated by profiler runtime. The resulting merged “raw” profile
data
file still needs to be converted to a different format expected by the compiler (
see step 3 below).

$ LLVM_PROFILE_FILE="code-%m.profraw" ./code


3. Combine profiles from multiple runs and convert the “raw” profile format to
 the input expected by clang. Use the merge command of the
llvm-
profdata tool to do this.

$ llvm-profdata merge -output=code.profdata code-*.profraw


Note that this step is necessary even when there is only one “raw” profile,
since the merge operation also changes the file format.

4. Build the code again using the -fprofile-instr-use option to specify the
collected profile data.

$ clang++ -O2 -fprofile-instr-use=code.profdata code.cc -o code


You can repeat step 4 as often as you like without regenerating the
profile. As you make changes to your code, clang may no longer be able to
use the profile data. It will warn you when this happens.

Profile generation using an alternative instrumentation method can be
controlled by the GCC-compatible flags -fprofile-generate and
 -fprofile-use.
Although these flags are semantically equivalent to
their GCC counterparts, they do not handle GCC-compatible profiles.
They are only meant to

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id43
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#profiling-with-instrumentation


implement GCC’s semantics with respect to
 profile creation and use. Flag -fcs-profile-generate also instruments
 programs using the same
instrumentation method as -fprofile-generate.

-fprofile-generate[=<dirname>] ¶

The -fprofile-generate and -fprofile-generate= flags will use
an alternative instrumentation method for profile generation. When
given a
directory name, it generates the profile file
default_%m.profraw in the directory named dirname if specified.
If dirname does not exist, it will
be created at runtime. %m specifier
will be substituted with a unique id documented in step 2 above. In other words,
with -fprofile-
generate[=<dirname>] option, the “raw” profile data automatic
merging is turned on by default, so there will no longer any risk of profile
clobbering from different running processes. For example,

$ clang++ -O2 -fprofile-generate=yyy/zzz code.cc -o code


When code is executed, the profile will be written to the file
yyy/zzz/default_xxxx.profraw.

To generate the profile data file with the compiler readable format, the
llvm-profdata tool can be used with the profile directory as the
input:

$ llvm-profdata merge -output=code.profdata yyy/zzz/


If the user wants to turn off the auto-merging feature, or simply override the
 the profile dumping path specified at command line, the
environment variable
LLVM_PROFILE_FILE can still be used to override
the directory and filename for the profile file at runtime.

-fcs-profile-generate[=<dirname>] ¶

The -fcs-profile-generate and -fcs-profile-generate= flags will use
 the same instrumentation method, and generate the same profile as in the
 -
fprofile-generate and -fprofile-generate= flags. The difference is
that the instrumentation is performed after inlining so that the resulted
profile
has a better context sensitive information. They cannot be used
together with -fprofile-generate and -fprofile-generate= flags.
They are typically
used in conjunction with -fprofile-use flag.
The profile generated by -fcs-profile-generate and -fprofile-generate
can be merged by llvm-profdata. A
use example:

$ clang++ -O2 -fprofile-generate=yyy/zzz code.cc -o code

$ ./code

$ llvm-profdata merge -output=code.profdata yyy/zzz/


The first few steps are the same as that in -fprofile-generate
compilation. Then perform a second round of instrumentation.

$ clang++ -O2 -fprofile-use=code.profdata -fcs-profile-generate=sss/ttt \

  -o cs_code

$ ./cs_code

$ llvm-profdata merge -output=cs_code.profdata sss/ttt code.profdata


The resulted cs_code.prodata combines code.profdata and the profile
generated from binary cs_code. Profile cs_code.profata can be used by
-fprofile-
use compilaton.

$ clang++ -O2 -fprofile-use=cs_code.profdata


The above command will read both profiles to the compiler at the identical
point of instrumenations.

-fprofile-use[=<pathname>] ¶

Without any other arguments, -fprofile-use behaves identically to
-fprofile-instr-use. Otherwise, if pathname is the full path to a
profile file, it reads
from that file. If pathname is a directory name,
it reads from pathname/default.profdata.

Disabling Instrumentation ¶

In certain situations, it may be useful to disable profile generation or use
for specific files in a build, without affecting the main compilation flags
used for the other files in the project.

In these cases, you can use the flag -fno-profile-instr-generate (or
-fno-profile-generate) to disable profile generation, and
-fno-profile-instr-use (or -fno-
profile-use) to disable profile use.

Note that these flags should appear after the corresponding profile
flags to have an effect.

Profile remapping ¶

When the program is compiled after a change that affects many symbol names,
pre-existing profile data may no longer match the program. For
example:

switching from libstdc++ to libc++ will result in the mangled names of all
functions taking standard library types to change
renaming a widely-used type in C++ will result in the mangled names of all
functions that have parameters involving that type to
change
moving from a 32-bit compilation to a 64-bit compilation may change the
underlying type of size_t and similar types, resulting in
changes to
manglings

Clang allows use of a profile remapping file to specify that such differences
in mangled names should be ignored when matching the profile data
against the
program.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fprofile-generate
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fcs-profile-generate
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fprofile-use
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id44
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#disabling-instrumentation
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id45
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#profile-remapping


-fprofile-remapping-file=<file> ¶

Specifies a file containing profile remapping information, that will be
used to match mangled names in the profile data to mangled names in
the
program.

The profile remapping file is a text file containing lines of the form

fragmentkind fragment1 fragment2


where fragmentkind is one of name, type, or encoding,
 indicating whether the following mangled name fragments are
 <name>s,
 <type>s, or
<encoding>s,
respectively.
Blank lines and lines starting with # are ignored.

For convenience, built-in <substitution>s such as St and Ss
are accepted as <name>s (even though they technically are not <name>s).

For example, to specify that absl::string_view and std::string_view
 should be treated as equivalent when matching profile data, the following
remapping file could be used:

# absl::string_view is considered equivalent to std::string_view

type N4absl11string_viewE St17basic_string_viewIcSt11char_traitsIcEE



# std:: might be std::__1:: in libc++ or std::__cxx11:: in libstdc++

name 3std St3__1

name 3std St7__cxx11

Matching profile data using a profile remapping file is supported on a
best-effort basis. For example, information regarding indirect call targets is
currently not remapped. For best results, you are encouraged to generate new
profile data matching the updated program, or to remap the profile
data
using the llvm-cxxmap and llvm-profdata merge tools.

Note

Profile data remapping support is currently only implemented for LLVM’s
new pass manager, which can be enabled with
-fexperimental-
new-pass-manager.

Note

Profile data remapping is currently only supported for C++ mangled names
 following the Itanium C++ ABI mangling scheme. This
covers all C++ targets
supported by Clang other than Windows.

GCOV-based Profiling ¶

GCOV is a test coverage program, it helps to know how often a line of code
is executed. When instrumenting the code with --coverage option, some
counters are added for each edge linking basic blocks.

At compile time, gcno files are generated containing information about
blocks and edges between them. At runtime the counters are incremented
and at
exit the counters are dumped in gcda files.

The tool llvm-cov gcov will parse gcno, gcda and source files to generate
a report .c.gcov.

-fprofile-filter-files=[regexes] ¶

Define a list of regexes separated by a semi-colon.
If a file name matches any of the regexes then the file is instrumented.

$ clang --coverage -fprofile-filter-files=".*\.c$" foo.c


For example, this will only instrument files finishing with .c, skipping .h files.

-fprofile-exclude-files=[regexes] ¶

Define a list of regexes separated by a semi-colon.
If a file name doesn’t match all the regexes then the file is instrumented.

$ clang --coverage -fprofile-exclude-files="^/usr/include/.*$" foo.c


For example, this will instrument all the files except the ones in /usr/include.

If both options are used then a file is instrumented if its name matches any
of the regexes from -fprofile-filter-list and doesn’t match all the
regexes
from -fprofile-exclude-list.

$ clang --coverage -fprofile-exclude-files="^/usr/include/.*$" \

        -fprofile-filter-files="^/usr/.*$"


In that case /usr/foo/oof.h is instrumented since it matches the filter regex and
doesn’t match the exclude regex, but /usr/include/foo.h doesn’t since it
matches
the exclude regex.

Controlling Debug Information ¶

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fprofile-remapping-file
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangle.name
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangle.type
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangle.encoding
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id46
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#gcov-based-profiling
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fprofile-filter-files
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fprofile-exclude-files
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id47
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-debug-information


Controlling Size of Debug Information ¶

Debug info kind generated by Clang can be set by one of the flags listed
below. If multiple flags are present, the last one is used.

-g0 ¶

Don’t generate any debug info (default).

-gline-tables-only ¶

Generate line number tables only.

This kind of debug info allows to obtain stack traces with function names,
file names and line numbers (by such tools as gdb or addr2line). It
doesn’t contain any other data (e.g. description of local variables or
function parameters).

-fstandalone-debug ¶

Clang supports a number of optimizations to reduce the size of debug
information in the binary. They work based on the assumption that
the
debug type information can be spread out over multiple
compilation units. For instance, Clang will not emit type
definitions for types that are
not needed by a module and could be
replaced with a forward declaration. Further, Clang will only emit
type info for a dynamic C++ class in
the module that contains the
vtable for the class.

The -fstandalone-debug option turns off these optimizations.
This is useful when working with 3rd-party libraries that don’t come
with debug
information. Note that Clang will never emit type
information for types that are not referenced at all by the program.

-fno-standalone-debug ¶

On Darwin -fstandalone-debug is enabled by default. The
-fno-standalone-debug option can be used to get to turn on the
vtable-based
optimization described above.

-g ¶

Generate complete debug info.

Controlling Macro Debug Info Generation ¶

Debug info for C preprocessor macros increases the size of debug information in
the binary. Macro debug info generated by Clang can be controlled
by the flags
listed below.

-fdebug-macro ¶

Generate debug info for preprocessor macros. This flag is discarded when
-g0 is enabled.

-fno-debug-macro ¶

Do not generate debug info for preprocessor macros (default).

Controlling Debugger “Tuning” ¶

While Clang generally emits standard DWARF debug info (http://dwarfstd.org),
different debuggers may know how to take advantage of different
specific DWARF
features. You can “tune” the debug info for one of several different debuggers.

-ggdb, -glldb, -gsce ¶

Tune the debug info for the gdb, lldb, or Sony PlayStation®
debugger, respectively. Each of these options implies -g. (Therefore, if
you want
both -gline-tables-only and debugger tuning, the tuning option
must come first.)

Controlling LLVM IR Output ¶

Controlling Value Names in LLVM IR ¶

Emitting value names in LLVM IR increases the size and verbosity of the IR.
By default, value names are only emitted in assertion-enabled builds of
Clang.
However, when reading IR it can be useful to re-enable the emission of value
names to improve readability.

-fdiscard-value-names ¶

Discard value names when generating LLVM IR.

-fno-discard-value-names ¶

Do not discard value names when generating LLVM IR. This option can be used
to re-enable names for release builds of Clang.

Comment Parsing Options ¶

Clang parses Doxygen and non-Doxygen style documentation comments and attaches
them to the appropriate declaration nodes. By default, it only
parses
Doxygen-style comments and ignores ordinary comments starting with // and
/*.

-Wdocumentation ¶

Emit warnings about use of documentation comments. This warning group is off
by default.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id48
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-size-of-debug-information
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-g0
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-gline-tables-only
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fstandalone-debug
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fno-standalone-debug
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-g
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id49
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-macro-debug-info-generation
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fdebug-macro
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fno-debug-macro
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id50
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-debugger-tuning
http://dwarfstd.org/
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ggdb
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id51
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-llvm-ir-output
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id52
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-value-names-in-llvm-ir
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fdiscard-value-names
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fno-discard-value-names
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id53
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#comment-parsing-options
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-wdocumentation


This includes checking that \param commands name parameters that actually
present in the function signature, checking that \returns is used
only on
functions that actually return a value etc.

-Wno-documentation-unknown-command ¶

Don’t warn when encountering an unknown Doxygen command.

-fparse-all-comments ¶

Parse all comments as documentation comments (including ordinary comments
starting with // and /*).

-fcomment-block-commands=[commands] ¶

Define custom documentation commands as block commands. This allows Clang to
construct the correct AST for these custom commands,
and silences warnings
about unknown commands. Several commands must be separated by a comma
without trailing space; e.g. -fcomment-
block-commands=foo,bar defines
custom commands \foo and \bar.

It is also possible to use -fcomment-block-commands several times; e.g.
-fcomment-block-commands=foo -fcomment-block-commands=bar does the same
as above.

C Language Features ¶

The support for standard C in clang is feature-complete except for the
C99 floating-point pragmas.

Extensions supported by clang ¶

See Clang Language Extensions.

Differences between various standard modes ¶

clang supports the -std option, which changes what language mode clang
 uses. The supported modes for C are c89, gnu89, c99, gnu99, c11,
gnu11,
c17, gnu17, and various aliases for those modes. If no -std option is
specified, clang defaults to gnu11 mode. Many C99 and C11 features
are
supported in earlier modes as a conforming extension, with a warning. Use
-pedantic-errors to request an error if a feature from a later standard
revision is used in an earlier mode.

Differences between all c* and gnu* modes:

c* modes define “__STRICT_ANSI__”.
Target-specific defines not prefixed by underscores, like “linux”,
are defined in gnu* modes.
Trigraphs default to being off in gnu* modes; they can be enabled by
the -trigraphs option.
The parser recognizes “asm” and “typeof” as keywords in gnu* modes;
the variants “__asm__” and “__typeof__” are recognized in all
modes.
The Apple “blocks” extension is recognized by default in gnu* modes
on some platforms; it can be enabled in any mode with the “-fblocks”
option.
Arrays that are VLA’s according to the standard, but which can be
constant folded by the frontend are treated as fixed size arrays.
This occurs
for things like “int X[(1, 2)];”, which is technically a
VLA. c* modes are strictly compliant and treat these as VLAs.

Differences between *89 and *99 modes:

The *99 modes default to implementing “inline” as specified in C99,
while the *89 modes implement the GNU version. This can be
overridden for
individual functions with the __gnu_inline__
attribute.
Digraphs are not recognized in c89 mode.
The scope of names defined inside a “for”, “if”, “switch”, “while”,
or “do” statement is different. (example: “if ((struct x {int
x;}*)0) {}”.)
__STDC_VERSION__ is not defined in *89 modes.
“inline” is not recognized as a keyword in c89 mode.
“restrict” is not recognized as a keyword in *89 modes.
Commas are allowed in integer constant expressions in *99 modes.
Arrays which are not lvalues are not implicitly promoted to pointers
in *89 modes.
Some warnings are different.

Differences between *99 and *11 modes:

Warnings for use of C11 features are disabled.
__STDC_VERSION__ is defined to 201112L rather than 199901L.

Differences between *11 and *17 modes:

__STDC_VERSION__ is defined to 201710L rather than 201112L.

GCC extensions not implemented yet ¶

clang tries to be compatible with gcc as much as possible, but some gcc
extensions are not implemented yet:

clang does not support decimal floating point types (_Decimal32 and
 friends) or fixed-point types (_Fract and friends); nobody has
 expressed
interest in these features yet, so it’s hard to say when
they will be implemented.

clang does not support nested functions; this is a complex feature
which is infrequently used, so it is unlikely to be implemented
anytime soon.
In C++11 it can be emulated by assigning lambda
functions to local variables, e.g:

auto const local_function = [&](int parameter) {

  // Do something

};


https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-wno-documentation-unknown-command
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fparse-all-comments
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fcomment-block-commands
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id54
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#c-language-features
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id55
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#extensions-supported-by-clang
https://releases.llvm.org/10.0.0/tools/clang/docs/LanguageExtensions.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id56
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#differences-between-various-standard-modes
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id57
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#gcc-extensions-not-implemented-yet


...

local_function(1);


clang only supports global register variables when the register specified
is non-allocatable (e.g. the stack pointer). Support for general global
register variables is unlikely to be implemented soon because it requires
additional LLVM backend support.

clang does not support static initialization of flexible array
members. This appears to be a rarely used extension, but could be
 implemented
pending user demand.

clang does not support
__builtin_va_arg_pack/__builtin_va_arg_pack_len. This is
used rarely, but in some potentially interesting places, like the
glibc
headers, so it may be implemented pending user demand. Note
 that because clang pretends to be like GCC 4.2, and this extension
 was
introduced in 4.3, the glibc headers will not try to use this
extension with clang at the moment.

clang does not support the gcc extension for forward-declaring
function parameters; this has not shown up in any real-world code
yet, though,
so it might never be implemented.

This is not a complete list; if you find an unsupported extension
missing from this list, please send an e-mail to cfe-dev. This list
currently excludes
C++; see C++ Language Features. Also, this
list does not include bugs in mostly-implemented features; please see
the bug
tracker
for known
existing bugs (FIXME: Is there a section for bug-reporting
guidelines somewhere?).

Intentionally unsupported GCC extensions ¶

clang does not support the gcc extension that allows variable-length
arrays in structures. This is for a few reasons: one, it is tricky to
implement,
two, the extension is completely undocumented, and three,
the extension appears to be rarely used. Note that clang does
support flexible array
members (arrays with a zero or unspecified
size at the end of a structure).
clang does not have an equivalent to gcc’s “fold”; this means that
clang doesn’t accept some constructs gcc might accept in contexts
where a
constant expression is required, like “x-x” where x is a
variable.
clang does not support __builtin_apply and friends; this extension
is extremely obscure and difficult to implement reliably.

Microsoft extensions ¶

clang has support for many extensions from Microsoft Visual C++. To enable these
extensions, use the -fms-extensions command-line option. This is
the default
 for Windows targets. Clang does not implement every pragma or declspec provided
 by MSVC, but the popular ones, such as
__declspec(dllexport) and #pragma
comment(lib) are well supported.

clang has a -fms-compatibility flag that makes clang accept enough
invalid C++ to be able to parse most Microsoft headers. For example, it
allows
unqualified lookup of dependent base class members, which is
a common compatibility issue with clang. This flag is enabled by default
for
Windows targets.

-fdelayed-template-parsing lets clang delay parsing of function template
definitions until the end of a translation unit. This flag is enabled by
default for
Windows targets.

For compatibility with existing code that compiles with MSVC, clang defines the
_MSC_VER and _MSC_FULL_VER macros. These default to the values of 1800
and 180000000 respectively, making clang look like an early release of Visual
C++ 2013. The -fms-compatibility-version= flag overrides these values.
It
accepts a dotted version tuple, such as 19.00.23506. Changing the MSVC
compatibility version makes clang behave more like that version of
MSVC. For
example, -fms-compatibility-version=19 will enable C++14 features and define
char16_t and char32_t as builtin types.

C++ Language Features ¶

clang fully implements all of standard C++98 except for exported
templates (which were removed in C++11), and all of standard C++11
and the
current draft standard for C++1y.

Controlling implementation limits ¶

-fbracket-depth=N ¶

Sets the limit for nested parentheses, brackets, and braces to N. The
default is 256.

-fconstexpr-depth=N ¶

Sets the limit for recursive constexpr function invocations to N. The
default is 512.

-fconstexpr-steps=N ¶

Sets the limit for the number of full-expressions evaluated in a single
constant expression evaluation. The default is 1048576.

-ftemplate-depth=N ¶

Sets the limit for recursively nested template instantiations to N. The
default is 1024.

-foperator-arrow-depth=N ¶

Sets the limit for iterative calls to ‘operator->’ functions to N. The
default is 256.

Objective-C Language Features ¶

Objective-C++ Language Features ¶

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cxx
https://bugs.llvm.org/buglist.cgi?quicksearch=product%3Aclang+component%3A-New%2BBugs%2CAST%2CBasic%2CDriver%2CHeaders%2CLLVM%2BCodeGen%2Cparser%2Cpreprocessor%2CSemantic%2BAnalyzer
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id58
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#intentionally-unsupported-gcc-extensions
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id59
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#microsoft-extensions
https://clang.llvm.org/compatibility.html#dep_lookup_bases
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id60
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cxx
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id61
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#controlling-implementation-limits
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fbracket-depth
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fconstexpr-depth
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fconstexpr-steps
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ftemplate-depth
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-foperator-arrow-depth
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id62
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#objective-c-language-features
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id63
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#objcxx


OpenMP Features ¶

Clang supports all OpenMP 4.5 directives and clauses. See OpenMP Support
for additional details.

Use -fopenmp to enable OpenMP. Support for OpenMP can be disabled with
-fno-openmp.

Use -fopenmp-simd to enable OpenMP simd features only, without linking
the runtime library; for combined constructs
(e.g. #pragma omp parallel for
simd) the non-simd directives and clauses
will be ignored. This can be disabled with -fno-openmp-simd.

Controlling implementation limits ¶

-fopenmp-use-tls ¶

Controls code generation for OpenMP threadprivate variables. In presence of
this option all threadprivate variables are generated the same
way as thread
 local variables, using TLS support. If -fno-openmp-use-tls
 is provided or target does not support TLS, code generation for
threadprivate
variables relies on OpenMP runtime library.

OpenCL Features ¶

Clang can be used to compile OpenCL kernels for execution on a device
(e.g. GPU). It is possible to compile the kernel into a binary (e.g. for AMD or
Nvidia targets) that can be uploaded to run directly on a device (e.g. using
clCreateProgramWithBinary) or
 into generic bitcode files loadable
into other toolchains.

Compiling to a binary using the default target from the installation can be done
as follows:

$ echo "kernel void k(){}" > test.cl

$ clang test.cl


Compiling for a specific target can be done by specifying the triple corresponding
to the target, for example:

$ clang -target nvptx64-unknown-unknown test.cl

$ clang -target amdgcn-amd-amdhsa -mcpu=gfx900 test.cl


Compiling to bitcode can be done as follows:

$ clang -c -emit-llvm test.cl


This will produce a generic test.bc file that can be used in vendor toolchains
to perform machine code generation.

Clang currently supports OpenCL C language standards up to v2.0. Starting from
 clang 9 a C++ mode is available for OpenCL (see
 C++ for
OpenCL).

OpenCL Specific Options ¶

Most of the OpenCL build options from the specification v2.0 section 5.8.4 are available.

Examples:

$ clang -cl-std=CL2.0 -cl-single-precision-constant test.cl


Some extra options are available to support special OpenCL features.

-finclude-default-header ¶

Loads standard includes during compilations. By default OpenCL headers are not
loaded and therefore standard library includes are not available. To
load them
automatically a flag has been added to the frontend (see also the section
on the OpenCL Header):

$ clang -Xclang -finclude-default-header test.cl


Alternatively -include or -I followed by the path to the header location
can be given manually.

$ clang -I<path to clang>/lib/Headers/opencl-c.h test.cl


In this case the kernel code should contain #include <opencl-c.h> just as a
regular C include.

-cl-ext ¶

Disables support of OpenCL extensions. All OpenCL targets provide a list
of extensions that they support. Clang allows to amend this using the -cl-
ext
flag with a comma-separated list of extensions prefixed with '+' or '-'.
The syntax: -cl-ext=<(['-'|'+']<extension>[,])+>, where extensions
can be
either one of the OpenCL specification extensions
 or any known vendor extension. Alternatively, 'all' can be used to enable
 or disable all
known extensions.
Example disabling double support for the 64-bit SPIR target:

$ clang -cc1 -triple spir64-unknown-unknown -cl-ext=-cl_khr_fp64 test.cl


Enabling all extensions except double support in R600 AMD GPU can be done using:

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id64
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#openmp-features
https://releases.llvm.org/10.0.0/tools/clang/docs/OpenMPSupport.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id65
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id6
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-fopenmp-use-tls
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id66
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-features
https://www.khronos.org/registry/OpenCL/specs/opencl-1.1.pdf#111
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cxx-for-opencl
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id67
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-specific-options
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf#200
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-finclude-default-header
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-header
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-cl-ext
https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/EXTENSION.html


$ clang -cc1 -triple r600-unknown-unknown -cl-ext=-all,+cl_khr_fp16 test.cl


-ffake-address-space-map ¶

Overrides the target address space map with a fake map.
This allows adding explicit address space IDs to the bitcode for non-segmented
memory
architectures that don’t have separate IDs for each of the OpenCL
logical address spaces by default. Passing -ffake-address-space-map will
add/override
address spaces of the target compiled for with the following values:
1-global, 2-constant, 3-local, 4-generic. The private address
space is represented by
the absence of an address space attribute in the IR (see
also the section on the address space attribute).

$ clang -ffake-address-space-map test.cl


Some other flags used for the compilation for C can also be passed while
compiling for OpenCL, examples: -c, -O<1-4|s>, -o, -emit-llvm, etc.

OpenCL Targets ¶

OpenCL targets are derived from the regular Clang target classes. The OpenCL
specific parts of the target representation provide address space
mapping as
well as a set of supported extensions.

Specific Targets ¶

There is a set of concrete HW architectures that OpenCL can be compiled for.

For AMD target:

$ clang -target amdgcn-amd-amdhsa -mcpu=gfx900 test.cl


For Nvidia architectures:

$ clang -target nvptx64-unknown-unknown test.cl


Generic Targets ¶

SPIR is available as a generic target to allow portable bitcode to be produced
 that can be used across GPU toolchains. The implementation
follows the SPIR
specification. There are two flavors
available for 32 and 64 bits.

$ clang -target spir-unknown-unknown test.cl

$ clang -target spir64-unknown-unknown test.cl


All known OpenCL extensions are supported in the SPIR targets. Clang will
generate SPIR v1.2 compatible IR for OpenCL versions up to 2.0 and
SPIR v2.0
for OpenCL v2.0.

x86 is used by some implementations that are x86 compatible and currently
remains for backwards compatibility (with older implementations
prior to
 SPIR target support). For “non-SPMD” targets which cannot spawn multiple
 work-items on the fly using hardware, which covers
practically all non-GPU
devices such as CPUs and DSPs, additional processing is needed for the kernels
to support multiple work-item execution.
For this, a 3rd party toolchain,
such as for example POCL, can be used.

This target does not support multiple memory segments and, therefore, the fake
address space map can be added using the -ffake-address-
space-map flag.

OpenCL Header ¶

By default Clang will not include standard headers and therefore OpenCL builtin
functions and some types (i.e. vectors) are unknown. The default
CL header is,
however, provided in the Clang installation and can be enabled by passing the
-finclude-default-header flag to the Clang frontend.

$ echo "bool is_wg_uniform(int i){return get_enqueued_local_size(i)==get_local_size(i);}" > test.cl

$ clang -Xclang -finclude-default-header -cl-std=CL2.0 test.cl


Because the header is very large and long to parse, PCH (Precompiled Header and Modules Internals)
 and modules (Modules) are used
internally to improve the compilation
speed.

To enable modules for OpenCL:

$ clang -target spir-unknown-unknown -c -emit-llvm -Xclang -finclude-default-header -fmodules -fimplicit-module-maps -fmodules-cache-path=<path to the generated

OpenCL Extensions ¶

All of the cl_khr_* extensions from the official OpenCL specification
up to and including version 2.0 are available and set per target depending on
the
support available in the specific architecture.

It is possible to alter the default extensions setting per target using
-cl-ext flag. (See flags description for more details).

Vendor extensions can be added flexibly by declaring the list of types and
functions associated with each extensions enclosed within the following
compiler pragma directives:

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cmdoption-ffake-address-space-map
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-addrsp
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id68
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-targets
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id69
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#specific-targets
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id70
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#generic-targets
https://www.khronos.org/spir
http://portablecl.org/
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-fake-address-space-map
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id71
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-header
https://releases.llvm.org/10.0.0/tools/clang/docs/PCHInternals.html
https://releases.llvm.org/10.0.0/tools/clang/docs/Modules.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id72
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-extensions
https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/EXTENSION.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-cl-ext


#pragma OPENCL EXTENSION the_new_extension_name : begin

// declare types and functions associated with the extension here

#pragma OPENCL EXTENSION the_new_extension_name : end


For example, parsing the following code adds my_t type and my_func
function to the custom my_ext extension.

#pragma OPENCL EXTENSION my_ext : begin

typedef struct{

  int a;

}my_t;

void my_func(my_t);

#pragma OPENCL EXTENSION my_ext : end


Declaring the same types in different vendor extensions is disallowed.

Clang also supports language extensions documented in The OpenCL C Language
Extensions Documentation.

OpenCL Metadata ¶

Clang uses metadata to provide additional OpenCL semantics in IR needed for
backends and OpenCL runtime.

Each kernel will have function metadata attached to it, specifying the arguments.
 Kernel argument metadata is used to provide source level
information for querying
at runtime, for example using the clGetKernelArgInfo
call.

Note that -cl-kernel-arg-info enables more information about the original CL
 code to be added e.g. kernel parameter names will appear in the
OpenCL metadata
along with other information.

The IDs used to encode the OpenCL’s logical address spaces in the argument info
metadata follows the SPIR address space mapping as defined in
the SPIR
specification section 2.2

OpenCL-Specific Attributes ¶

OpenCL support in Clang contains a set of attribute taken directly from the
specification as well as additional attributes.

See also Attributes in Clang.

nosvm ¶

Clang supports this attribute to comply to OpenCL v2.0 conformance, but it
 does not have any effect on the IR. For more details reffer to the
specification
section 6.7.2

opencl_unroll_hint ¶

The implementation of this feature mirrors the unroll hint for C.
More details on the syntax can be found in the specification
section 6.11.5

convergent ¶

To make sure no invalid optimizations occur for single program multiple data
 (SPMD) / single instruction multiple thread (SIMT) Clang provides
attributes that
 can be used for special functions that have cross work item semantics.
 An example is the subgroup operations such as
intel_sub_group_shuffle

// Define custom my_sub_group_shuffle(data, c)

// that makes use of intel_sub_group_shuffle

r1 = ...

if (r0) r1 = computeA();

// Shuffle data from r1 into r3

// of threads id r2.
r3 = my_sub_group_shuffle(r1, r2);

if (r0) r3 = computeB();


with non-SPMD semantics this is optimized to the following equivalent code:

r1 = ...

if (!r0)

  // Incorrect functionality! The data in r1

  // have not been computed by all threads yet.

  r3 = my_sub_group_shuffle(r1, r2);

else {

  r1 = computeA();

  r3 = my_sub_group_shuffle(r1, r2);

  r3 = computeB();

}


Declaring the function my_sub_group_shuffle with the convergent attribute
would prevent this:

my_sub_group_shuffle() __attribute__((convergent));


https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/opencl/assets/OpenCL_LangExt.pdf
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id73
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-metadata
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf#167
https://www.khronos.org/registry/spir/specs/spir_spec-2.0.pdf#18
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id74
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-specific-attributes
https://releases.llvm.org/10.0.0/tools/clang/docs/AttributeReference.html
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id75
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#nosvm
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#49
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id76
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-unroll-hint
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#61
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id77
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#convergent
https://www.khronos.org/registry/cl/extensions/intel/cl_intel_subgroups.txt


Using convergent guarantees correct execution by keeping CFG equivalence
wrt operations marked as convergent. CFG G´ is equivalent to G wrt
node Ni :
iff ∀ Nj (i≠j) domination and post-domination relations with
respect to Ni remain the same in both G and G´.

noduplicate ¶

noduplicate is more restrictive with respect to optimizations than
 convergent because a convergent function only preserves CFG equivalence.
 This
allows some optimizations to happen as long as the control flow remains
unmodified.

for (int i=0; i<4; i++)

  my_sub_group_shuffle()


can be modified to:

my_sub_group_shuffle();

my_sub_group_shuffle();

my_sub_group_shuffle();

my_sub_group_shuffle();


while using noduplicate would disallow this. Also noduplicate doesn’t
have the same safe semantics of CFG as convergent and can cause changes in
CFG
that modify semantics of the original program.

noduplicate is kept for backwards compatibility only and it considered to be
deprecated for future uses.

address_space ¶

Clang has arbitrary address space support using the address_space(N)
attribute, where N is an integer number in the range 0 to 16777215
(0xffffffu).

An OpenCL implementation provides a list of standard address spaces using
keywords: private, local, global, and generic. In the AST and
in the IR local,
global, or generic will be represented by the address space
attribute with the corresponding unique number. Note that private does not have
any
corresponding attribute added and, therefore, is represented by the absence
of an address space number. The specific IDs for an address space do
not have to
 match between the AST and the IR. Typically in the AST address space numbers
 represent logical segments while in the IR they
represent physical segments.
 Therefore, machines with flat memory segments can map all AST address space
 numbers to the same physical
segment ID or skip address space attribute
 completely while generating the IR. However, if the address space information
 is needed by the IR
passes e.g. to improve alias analysis, it is recommended
to keep it and only lower to reflect physical memory segments in the late
machine passes.

OpenCL builtins ¶

There are some standard OpenCL functions that are implemented as Clang builtins:

All pipe functions from section 6.13.16.2/6.13.16.3 of
the OpenCL v2.0 kernel language specification. `
Address space qualifier conversion functions to_global/to_local/to_private
from section 6.13.9.
All the enqueue_kernel functions from section 6.13.17.1 and
enqueue query functions from section 6.13.17.5.

C++ for OpenCL ¶

Starting from clang 9 kernel code can contain C++17 features: classes, templates,
function overloading, type deduction, etc. Please note that this is
not an
implementation of OpenCL C++ and
there is no plan to support it in clang in any new releases in the near future.

For detailed information about this language refer to The C++ for OpenCL
Programming Language Documentation.

Since C++ features are to be used on top of OpenCL C functionality, all existing
restrictions from OpenCL C v2.0 will inherently apply. All OpenCL C
builtin types
and function libraries are supported and can be used in this mode.

To enable the C++ for OpenCL mode, pass one of following command line options when
compiling .cl file -cl-std=clc++, -cl-std=CLC++, -std=clc++ or
 -
std=CLC++.

template<class T> T add( T x, T y )

{

  return x + y;

}



__kernel void test( __global float* a, __global float* b)

{

  auto index = get_global_id(0);

  a[index] = add(b[index], b[index+1]);

}


clang -cl-std=clc++ test.cl


Constructing and destroying global objects ¶

Global objects must be constructed before the first kernel using the global objects
 is executed and destroyed just after the last kernel using the
program objects is
executed. In OpenCL v2.0 drivers there is no specific API for invoking global
constructors. However, an easy workaround would
be to enqueue a constructor
initialization kernel that has a name @_GLOBAL__sub_I_<compiled file name>.
This kernel is only present if there are any global
objects to be initialized in
the compiled binary. One way to check this is by passing CL_PROGRAM_KERNEL_NAMES
to clGetProgramInfo (OpenCL v2.0 s5.8.7).

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id78
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#noduplicate
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id79
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#address-space
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id80
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#opencl-builtins
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#160
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#101
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#164
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#171
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id81
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#c-for-opencl
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_Cxx.pdf
https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/opencl/assets/CXX_for_OpenCL.pdf
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id82
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#constructing-and-destroying-global-objects


Note that if multiple files are compiled and linked into libraries, multiple kernels
that initialize global objects for multiple modules would have to be
invoked.

Applications are currently required to run initialization of global objects manually
before running any kernels in which the objects are used.

clang -cl-std=clc++ test.cl


If there are any global objects to be initialized, the final binary will contain
the @_GLOBAL__sub_I_test.cl kernel to be enqueued.

Global destructors can not be invoked in OpenCL v2.0 drivers. However, all memory used
for program scope objects is released on clReleaseProgram.

Target-Specific Features and Limitations ¶

CPU Architectures Features and Limitations ¶

X86 ¶

The support for X86 (both 32-bit and 64-bit) is considered stable on
Darwin (macOS), Linux, FreeBSD, and Dragonfly BSD: it has been tested
to
correctly compile many large C, C++, Objective-C, and Objective-C++
codebases.

On x86_64-mingw32, passing i128(by value) is incompatible with the
 Microsoft x64 calling convention. You might need to tweak
WinX86_64ABIInfo::classify() in lib/CodeGen/TargetInfo.cpp.

For the X86 target, clang supports the -m16 command line
 argument which enables 16-bit code output. This is broadly similar to
 using
asm(".code16gcc") with the GNU toolchain. The generated code
and the ABI remains 32-bit but the assembler emits instructions
appropriate for a CPU
running in 16-bit mode, with address-size and
operand-size prefixes to enable 32-bit addressing and operations.

ARM ¶

The support for ARM (specifically ARMv6 and ARMv7) is considered stable
on Darwin (iOS): it has been tested to correctly compile many large C,
C++, Objective-C, and Objective-C++ codebases. Clang only supports a
limited number of ARM architectures. It does not yet fully support
ARMv5,
for example.

PowerPC ¶

The support for PowerPC (especially PowerPC64) is considered stable
on Linux and FreeBSD: it has been tested to correctly compile many
large C
and C++ codebases. PowerPC (32bit) is still missing certain
features (e.g. PIC code on ELF platforms).

Other platforms ¶

clang currently contains some support for other architectures (e.g. Sparc);
however, significant pieces of code generation are still missing, and they
haven’t undergone significant testing.

clang contains limited support for the MSP430 embedded processor, but
 both the clang support and the LLVM backend support are highly
experimental.

Other platforms are completely unsupported at the moment. Adding the
 minimal support needed for parsing and semantic analysis on a new
platform is quite easy; see lib/Basic/Targets.cpp in the clang source
tree. This level of support is also sufficient for conversion to LLVM IR
for simple
programs. Proper support for conversion to LLVM IR requires
 adding code to lib/CodeGen/CGCall.cpp at the moment; this is likely to
 change soon,
though. Generating assembly requires a suitable LLVM
backend.

Operating System Features and Limitations ¶

Darwin (macOS) ¶

Thread Sanitizer is not supported.

Windows ¶

Clang has experimental support for targeting “Cygming” (Cygwin / MinGW)
platforms.

See also Microsoft Extensions.

Cygwin ¶

Clang works on Cygwin-1.7.

MinGW32 ¶

Clang works on some mingw32 distributions. Clang assumes directories as
below;

C:/mingw/include

C:/mingw/lib

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id83
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#target-specific-features-and-limitations
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id84
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cpu-architectures-features-and-limitations
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id85
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#x86
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id86
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#arm
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id87
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#powerpc
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id88
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#other-platforms
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id89
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#operating-system-features-and-limitations
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id90
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#darwin-macos
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id91
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#windows
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#c-ms
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id92
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#cygwin
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id93
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#mingw32


C:/mingw/lib/gcc/mingw32/4.[3-5].0/include/c++

On MSYS, a few tests might fail.

MinGW-w64 ¶

For 32-bit (i686-w64-mingw32), and 64-bit (x86_64-w64-mingw32), Clang
assumes as below;

GCC versions 4.5.0 to 4.5.3, 4.6.0 to 4.6.2, or 4.7.0 (for the C++ header search path)

some_directory/bin/gcc.exe

some_directory/bin/clang.exe

some_directory/bin/clang++.exe

some_directory/bin/../include/c++/GCC_version

some_directory/bin/../include/c++/GCC_version/x86_64-w64-mingw32

some_directory/bin/../include/c++/GCC_version/i686-w64-mingw32

some_directory/bin/../include/c++/GCC_version/backward

some_directory/bin/../x86_64-w64-mingw32/include

some_directory/bin/../i686-w64-mingw32/include

some_directory/bin/../include

This directory layout is standard for any toolchain you will find on the
official MinGW-w64 website.

Clang expects the GCC executable “gcc.exe” compiled for
i686-w64-mingw32 (or x86_64-w64-mingw32) to be present on PATH.

Some tests might fail on
x86_64-w64-mingw32.

clang-cl ¶

clang-cl is an alternative command-line interface to Clang, designed for
compatibility with the Visual C++ compiler, cl.exe.

To enable clang-cl to find system headers, libraries, and the linker when run
from the command-line, it should be executed inside a Visual Studio
Native Tools
Command Prompt or a regular Command Prompt where the environment has been set
up using e.g. vcvarsall.bat.

clang-cl can also be used from inside Visual Studio by selecting the LLVM
 Platform Toolset. The toolset is not part of the installer, but may be
installed
separately from the
Visual Studio Marketplace.
To use the toolset, select a project in Solution Explorer, open its Property
Page (Alt+F7),
and in the “General” section of “Configuration Properties”
 change “Platform Toolset” to LLVM. Doing so enables an additional Property
 Page for
selecting the clang-cl executable to use for builds.

To use the toolset with MSBuild directly, invoke it with e.g.
/p:PlatformToolset=LLVM. This allows trying out the clang-cl toolchain
without modifying your
project files.

It’s also possible to point MSBuild at clang-cl without changing toolset by
passing /p:CLToolPath=c:\llvm\bin /p:CLToolExe=clang-cl.exe.

When using CMake and the Visual Studio generators, the toolset can be set with the -T flag:

cmake -G"Visual Studio 15 2017" -T LLVM ..


When using CMake with the Ninja generator, set the CMAKE_C_COMPILER and
CMAKE_CXX_COMPILER variables to clang-cl:

cmake -GNinja -DCMAKE_C_COMPILER="c:/Program Files (x86)/LLVM/bin/clang-cl.exe"

    -DCMAKE_CXX_COMPILER="c:/Program Files (x86)/LLVM/bin/clang-cl.exe" ..


Command-Line Options ¶

To be compatible with cl.exe, clang-cl supports most of the same command-line
options. Those options can start with either / or -. It also supports
some of Clang’s core options, such as the -W options.

Options that are known to clang-cl, but not currently supported, are ignored
with a warning. For example:

clang-cl.exe: warning: argument unused during compilation: '/AI'


To suppress warnings about unused arguments, use the -Qunused-arguments option.

Options that are not known to clang-cl will be ignored by default. Use the
-Werror=unknown-argument option in order to treat them as errors. If these
options are spelled with a leading /, they will be mistaken for a filename:

clang-cl.exe: error: no such file or directory: '/foobar'


Please file a bug
for any valid cl.exe flags that clang-cl does not understand.

Execute clang-cl /? to see a list of supported options:

CL.EXE COMPATIBILITY OPTIONS:

  /?                      Display available options

  /arch:<value>           Set architecture for code generation

  /Brepro-                Write current time into COFF output (default)

  /Brepro                 Do not write current time into COFF output (breaks link.exe /incremental)

  /clang:<arg>            Pass <arg> to the clang driver

  /C                      Do not discard comments when preprocessing


https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id94
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#mingw-w64
http://mingw-w64.sourceforge.net/
https://bugs.llvm.org/show_bug.cgi?id=9072
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id95
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#clang-cl
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx
https://marketplace.visualstudio.com/items?itemName=LLVMExtensions.llvm-toolchain
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id96
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id9
https://bugs.llvm.org/enter_bug.cgi?product=clang&component=Driver


  /c                      Compile only

  /d1PP                   Retain macro definitions in /E mode

  /d1reportAllClassLayout Dump record layout information

  /diagnostics:caret      Enable caret and column diagnostics (default)

  /diagnostics:classic    Disable column and caret diagnostics

  /diagnostics:column     Disable caret diagnostics but keep column info

  /D <macro[=value]>      Define macro

  /EH<value>              Set exception handling model

  /EP                     Disable linemarker output and preprocess to stdout

  /execution-charset:<value>

                          Set runtime encoding, supports only UTF-8

  /E                      Preprocess to stdout

  /fallback               Fall back to cl.exe if clang-cl fails to compile

  /FA                     Output assembly code file during compilation

  /Fa<file or dir/>       Set assembly output file name (with /FA)

  /Fe<file or dir/>       Set output executable file name

  /FI <value>             Include file before parsing

  /Fi<file>               Set preprocess output file name (with /P)

  /Fo<file or dir/>       Set output object file (with /c)

  /fp:except-

  /fp:except

  /fp:fast

  /fp:precise

  /fp:strict

  /Fp<file>               Set pch file name (with /Yc and /Yu)

  /GA                     Assume thread-local variables are defined in the executable

  /Gd                     Set __cdecl as a default calling convention

  /GF-                    Disable string pooling

  /GF                     Enable string pooling (default)

  /GR-                    Do not emit RTTI data

  /Gregcall               Set __regcall as a default calling convention

  /GR                     Emit RTTI data (default)

  /Gr                     Set __fastcall as a default calling convention

  /GS-                    Disable buffer security check

  /GS                     Enable buffer security check (default)

  /Gs                     Use stack probes (default)

  /Gs<value>              Set stack probe size (default 4096)

  /guard:<value>          Enable Control Flow Guard with /guard:cf, or only the table with /guard:cf,nochecks

  /Gv                     Set __vectorcall as a default calling convention

  /Gw-                    Do not put each data item in its own section (default)

  /Gw                     Put each data item in its own section

  /GX-                    Deprecated (like not passing /EH)

  /GX                     Deprecated; use /EHsc

  /Gy-                    Do not put each function in its own section (default)

  /Gy                     Put each function in its own section

  /Gz                     Set __stdcall as a default calling convention

  /help                   Display available options

  /imsvc <dir>            Add <dir> to system include search path, as if in %INCLUDE%

  /I <dir>                Add directory to include search path

  /J                      Make char type unsigned

  /LDd                    Create debug DLL

  /LD                     Create DLL

  /link <options>         Forward options to the linker

  /MDd                    Use DLL debug run-time

  /MD                     Use DLL run-time

  /MTd                    Use static debug run-time

  /MT                     Use static run-time

  /O1                     Optimize for size  (like /Og     /Os /Oy /Ob2 /GF /Gy)

  /O2                     Optimize for speed (like /Og /Oi /Ot /Oy /Ob2 /GF /Gy)

  /Ob0                    Disable function inlining

  /Ob1                    Only inline functions explicitly or implicitly marked inline

  /Ob2                    Inline functions as deemed beneficial by the compiler

  /Od                     Disable optimization

  /Og                     No effect

  /Oi-                    Disable use of builtin functions

  /Oi                     Enable use of builtin functions

  /openmp-                Disable OpenMP support

  /openmp:experimental    Enable OpenMP support with experimental SIMD support

  /openmp                 Enable OpenMP support

  /Os                     Optimize for size

  /Ot                     Optimize for speed

  /Ox                     Deprecated (like /Og /Oi /Ot /Oy /Ob2); use /O2

  /Oy-                    Disable frame pointer omission (x86 only, default)

  /Oy                     Enable frame pointer omission (x86 only)

  /O<flags>               Set multiple /O flags at once; e.g. '/O2y-' for '/O2 /Oy-'

  /o <file or dir/>       Deprecated (set output file name); use /Fe or /Fe

  /P                      Preprocess to file

  /Qvec-                  Disable the loop vectorization passes

  /Qvec                   Enable the loop vectorization passes

  /showFilenames-         Do not print the name of each compiled file (default)

  /showFilenames          Print the name of each compiled file

  /showIncludes           Print info about included files to stderr

  /source-charset:<value> Set source encoding, supports only UTF-8

  /std:<value>            Set C++ version (c++14,c++17,c++latest)

  /TC                     Treat all source files as C

  /Tc <file>              Treat <file> as C source file

  /TP                     Treat all source files as C++

  /Tp <file>              Treat <file> as C++ source file

  /utf-8                  Set source and runtime encoding to UTF-8 (default)

  /U <macro>              Undefine macro

  /vd<value>              Control vtordisp placement

  /vmb                    Use a best-case representation method for member pointers




  /vmg                    Use a most-general representation for member pointers

  /vmm                    Set the default most-general representation to multiple inheritance

  /vms                    Set the default most-general representation to single inheritance

  /vmv                    Set the default most-general representation to virtual inheritance

  /volatile:iso           Volatile loads and stores have standard semantics

  /volatile:ms            Volatile loads and stores have acquire and release semantics

  /W0                     Disable all warnings

  /W1                     Enable -Wall

  /W2                     Enable -Wall

  /W3                     Enable -Wall

  /W4                     Enable -Wall and -Wextra

  /Wall                   Enable -Weverything

  /WX-                    Do not treat warnings as errors (default)

  /WX                     Treat warnings as errors

  /w                      Disable all warnings

  /X                      Do not add %INCLUDE% to include search path

  /Y-                     Disable precompiled headers, overrides /Yc and /Yu

  /Yc<filename>           Generate a pch file for all code up to and including <filename>

  /Yu<filename>           Load a pch file and use it instead of all code up to and including <filename>

  /Z7                     Enable CodeView debug information in object files

  /Zc:alignedNew-         Disable C++17 aligned allocation functions

  /Zc:alignedNew          Enable C++17 aligned allocation functions

  /Zc:char8_t-            Disable char8_t from c++2a

  /Zc:char8_t             Enable char8_t from C++2a

  /Zc:dllexportInlines-   Do not dllexport/dllimport inline member functions of dllexport/import classes

  /Zc:dllexportInlines    dllexport/dllimport inline member functions of dllexport/import classes (default)

  /Zc:sizedDealloc-       Disable C++14 sized global deallocation functions

  /Zc:sizedDealloc        Enable C++14 sized global deallocation functions

  /Zc:strictStrings       Treat string literals as const

  /Zc:threadSafeInit-     Disable thread-safe initialization of static variables

  /Zc:threadSafeInit      Enable thread-safe initialization of static variables

  /Zc:trigraphs-          Disable trigraphs (default)

  /Zc:trigraphs           Enable trigraphs

  /Zc:twoPhase-           Disable two-phase name lookup in templates (default)

  /Zc:twoPhase            Enable two-phase name lookup in templates

  /Zd                     Emit debug line number tables only

  /Zi                     Like /Z7

  /Zl                     Do not let object file auto-link default libraries

  /Zp                     Set default maximum struct packing alignment to 1

  /Zp<value>              Set default maximum struct packing alignment

  /Zs                     Syntax-check only



OPTIONS:

  -###                    Print (but do not run) the commands to run for this compilation

  --analyze               Run the static analyzer

  -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang

                          Trivial automatic variable initialization to zero is only here for benchmarks, it'll

                          eventually be removed, and I'm OK with that because I'm only using it to benchmark

  -faddrsig               Emit an address-significance table

  -fansi-escape-codes     Use ANSI escape codes for diagnostics

  -fblocks                Enable the 'blocks' language feature

  -fcf-protection=<value> Instrument control-flow architecture protection. Options: return, branch, full, none.

  -fcf-protection         Enable cf-protection in 'full' mode

  -fcolor-diagnostics     Use colors in diagnostics

  -fcomplete-member-pointers

                          Require member pointer base types to be complete if they would be significant under the Microsoft ABI

  -fcoverage-mapping      Generate coverage mapping to enable code coverage analysis

  -fcs-profile-generate=<directory>

                          Generate instrumented code to collect context sensitive execution counts into

                          <directory>/default.profraw (overridden by LLVM_PROFILE_FILE env var)

  -fcs-profile-generate   Generate instrumented code to collect context sensitive execution counts into

                          default.profraw (overridden by LLVM_PROFILE_FILE env var)

  -fdebug-compilation-dir <value>

                          The compilation directory to embed in the debug info.

  -fdebug-macro           Emit macro debug information

  -fdelayed-template-parsing

                          Parse templated function definitions at the end of the translation unit

  -fdiagnostics-absolute-paths

                          Print absolute paths in diagnostics

  -fdiagnostics-parseable-fixits

                          Print fix-its in machine parseable form

  -fgnuc-version=<value>  Sets various macros to claim compatibility with the given GCC version (default is 4.2.1)

  -fintegrated-cc1        Run cc1 in-process

  -flto=<value>           Set LTO mode to either 'full' or 'thin'

  -flto                   Enable LTO in 'full' mode

  -fmerge-all-constants   Allow merging of constants

  -fms-compatibility-version=<value>

                          Dot-separated value representing the Microsoft compiler version number to report in

                          _MSC_VER (0 = don't define it (default))

  -fms-compatibility      Enable full Microsoft Visual C++ compatibility

  -fms-extensions         Accept some non-standard constructs supported by the Microsoft compiler

  -fmsc-version=<value>   Microsoft compiler version number to report in _MSC_VER (0 = don't define it (default))

  -fno-addrsig            Don't emit an address-significance table

  -fno-builtin-<value>    Disable implicit builtin knowledge of a specific function

  -fno-builtin            Disable implicit builtin knowledge of functions

  -fno-complete-member-pointers

                          Do not require member pointer base types to be complete if they would be significant under the Microsoft ABI

  -fno-coverage-mapping   Disable code coverage analysis

  -fno-crash-diagnostics  Disable auto-generation of preprocessed source files and a script for reproduction during a clang crash

  -fno-debug-macro        Do not emit macro debug information

  -fno-delayed-template-parsing

                          Disable delayed template parsing




  -fno-integrated-cc1     Spawn a separate process for each cc1

  -fno-profile-generate   Disable generation of profile instrumentation.

  -fno-profile-instr-generate

                          Disable generation of profile instrumentation.

  -fno-profile-instr-use  Disable using instrumentation data for profile-guided optimization

  -fno-sanitize-address-poison-custom-array-cookie

                          Disable poisoning array cookies when using custom operator new[] in AddressSanitizer

  -fno-sanitize-address-use-after-scope

                          Disable use-after-scope detection in AddressSanitizer

  -fno-sanitize-address-use-odr-indicator

                          Disable ODR indicator globals

  -fno-sanitize-blacklist Don't use blacklist file for sanitizers

  -fno-sanitize-cfi-canonical-jump-tables

                          Do not make the jump table addresses canonical in the symbol table

  -fno-sanitize-cfi-cross-dso

                          Disable control flow integrity (CFI) checks for cross-DSO calls.

  -fno-sanitize-coverage=<value>

                          Disable specified features of coverage instrumentation for Sanitizers

  -fno-sanitize-memory-track-origins

                          Disable origins tracking in MemorySanitizer

  -fno-sanitize-memory-use-after-dtor

                          Disable use-after-destroy detection in MemorySanitizer

  -fno-sanitize-recover=<value>

                          Disable recovery for specified sanitizers

  -fno-sanitize-stats     Disable sanitizer statistics gathering.

  -fno-sanitize-thread-atomics

                          Disable atomic operations instrumentation in ThreadSanitizer

  -fno-sanitize-thread-func-entry-exit

                          Disable function entry/exit instrumentation in ThreadSanitizer

  -fno-sanitize-thread-memory-access

                          Disable memory access instrumentation in ThreadSanitizer

  -fno-sanitize-trap=<value>

                          Disable trapping for specified sanitizers

  -fno-standalone-debug   Limit debug information produced to reduce size of debug binary

  -fno-temp-file          Directly create compilation output files. This may lead to incorrect incremental builds if the compiler crashes

  -fobjc-runtime=<value>  Specify the target Objective-C runtime kind and version

  -forder-file-instrumentation

                          Generate instrumented code to collect order file into default.profraw file

                          (overridden by '=' form of option or LLVM_PROFILE_FILE env var)

  -fprofile-exclude-files=<value>

                          Instrument only functions from files where names don't match all the regexes separated by a semi-colon

  -fprofile-filter-files=<value>

                          Instrument only functions from files where names match any regex separated by a semi-colon

  -fprofile-generate=<directory>

                          Generate instrumented code to collect execution counts into

                          <directory>/default.profraw (overridden by LLVM_PROFILE_FILE env var)

  -fprofile-generate      Generate instrumented code to collect execution counts into

                          default.profraw (overridden by LLVM_PROFILE_FILE env var)

  -fprofile-instr-generate=<file>

                          Generate instrumented code to collect execution counts into

                          <file> (overridden by LLVM_PROFILE_FILE env var)

  -fprofile-instr-generate

                          Generate instrumented code to collect execution counts into

                          default.profraw file (overridden by '=' form of option or LLVM_PROFILE_FILE env var)

  -fprofile-instr-use=<value>

                          Use instrumentation data for profile-guided optimization

  -fprofile-remapping-file=<file>

                          Use the remappings described in <file> to match the profile data against names in the program

  -fsanitize-address-field-padding=<value>

                          Level of field padding for AddressSanitizer

  -fsanitize-address-globals-dead-stripping

                          Enable linker dead stripping of globals in AddressSanitizer

  -fsanitize-address-poison-custom-array-cookie

                          Enable poisoning array cookies when using custom operator new[] in AddressSanitizer

  -fsanitize-address-use-after-scope

                          Enable use-after-scope detection in AddressSanitizer

  -fsanitize-address-use-odr-indicator

                          Enable ODR indicator globals to avoid false ODR violation reports in partially sanitized

                          programs at the cost of an increase in binary size

  -fsanitize-blacklist=<value>

                          Path to blacklist file for sanitizers

  -fsanitize-cfi-canonical-jump-tables

                          Make the jump table addresses canonical in the symbol table

  -fsanitize-cfi-cross-dso

                          Enable control flow integrity (CFI) checks for cross-DSO calls.

  -fsanitize-cfi-icall-generalize-pointers

                          Generalize pointers in CFI indirect call type signature checks

  -fsanitize-coverage=<value>

                          Specify the type of coverage instrumentation for Sanitizers

  -fsanitize-hwaddress-abi=<value>

                          Select the HWAddressSanitizer ABI to target (interceptor or platform,

                          default interceptor). This option is currently unused.

  -fsanitize-memory-track-origins=<value>

                          Enable origins tracking in MemorySanitizer

  -fsanitize-memory-track-origins

                          Enable origins tracking in MemorySanitizer

  -fsanitize-memory-use-after-dtor

                          Enable use-after-destroy detection in MemorySanitizer

  -fsanitize-recover=<value>

                          Enable recovery for specified sanitizers

  -fsanitize-stats        Enable sanitizer statistics gathering.

  -fsanitize-system-blacklist=<value>




                          Path to system blacklist file for sanitizers

  -fsanitize-thread-atomics

                          Enable atomic operations instrumentation in ThreadSanitizer (default)

  -fsanitize-thread-func-entry-exit

                          Enable function entry/exit instrumentation in ThreadSanitizer (default)

  -fsanitize-thread-memory-access

                          Enable memory access instrumentation in ThreadSanitizer (default)

  -fsanitize-trap=<value> Enable trapping for specified sanitizers

  -fsanitize-undefined-strip-path-components=<number>

                          Strip (or keep only, if negative) a given number of path components when emitting check metadata.

  -fsanitize=<check>      Turn on runtime checks for various forms of undefined or suspicious behavior. See user manual for available checks

  -fsplit-lto-unit        Enables splitting of the LTO unit.

  -fstandalone-debug      Emit full debug info for all types used by the program

  -fthin-link-bitcode=<value>

                          Write minimized bitcode to <file> for the ThinLTO thin link only

  -fthinlto-index=<value> Perform ThinLTO importing using provided function summary index

  -ftime-trace-granularity=<value>

                          Minimum time granularity (in microseconds) traced by time profiler

  -ftime-trace            Turn on time profiler. Generates JSON file based on output filename.

  -ftrivial-auto-var-init=<value>

                          Initialize trivial automatic stack variables: uninitialized (default) | pattern

  -fvirtual-function-elimination

                          Enables dead virtual function elimination optimization. Requires -flto=full

  -fwhole-program-vtables Enables whole-program vtable optimization. Requires -flto

  -gcodeview-ghash        Emit type record hashes in a .debug$H section

  -gcodeview              Generate CodeView debug information

  -gdwarf                 Generate source-level debug information with the default dwarf version

  -gline-directives-only  Emit debug line info directives only

  -gline-tables-only      Emit debug line number tables only

  -gno-inline-line-tables Don't emit inline line tables

  -miamcu                 Use Intel MCU ABI

  -mllvm <value>          Additional arguments to forward to LLVM's option processing

  -nobuiltininc           Disable builtin #include directories

  -print-supported-cpus   Print supported cpu models for the given target

                          (if target is not specified, it will print the supported cpus for the default target)

  -Qunused-arguments      Don't emit warning for unused driver arguments

  -R<remark>              Enable the specified remark

  --target=<value>        Generate code for the given target

  --version               Print version information

  -v                      Show commands to run and use verbose output

  -W<warning>             Enable the specified warning

  -Xclang <arg>           Pass <arg> to the clang compiler


The /clang: Option ¶

When clang-cl is run with a set of /clang:<arg> options, it will gather all
of the <arg> arguments and process them as if they were passed to the clang
driver. This mechanism allows you to pass flags that are not exposed in the
clang-cl options or flags that have a different meaning when passed to
the clang
driver. Regardless of where they appear in the command line, the /clang:
arguments are treated as if they were passed at the end of the
clang-cl command
line.

The /Zc:dllexportInlines- Option ¶

This causes the class-level dllexport and dllimport attributes to not apply
to inline member functions, as they otherwise would. For example, in the
code
below S::foo() would normally be defined and exported by the DLL, but when
using the /Zc:dllexportInlines- flag it is not:

struct __declspec(dllexport) S {

  void foo() {}

}


This has the benefit that the compiler doesn’t need to emit a definition of
S::foo() in every translation unit where the declaration is included, as it
would otherwise do to ensure there’s a definition in the DLL even if it’s not
used there. If the declaration occurs in a header file that’s widely used,
this
can save significant compilation time and output size. It also reduces the
number of functions exported by the DLL similarly to what
-fvisibility-
inlines-hidden does for shared objects on ELF and Mach-O.
Since the function declaration comes with an inline definition, users of the
library can use
that definition directly instead of importing it from the DLL.

Note that the Microsoft Visual C++ compiler does not support this option, and
if code in a DLL is compiled with /Zc:dllexportInlines-, the code using
the
 DLL must be compiled in the same way so that it doesn’t attempt to dllimport
 the inline member functions. The reverse scenario should
generally work though:
a DLL compiled without this flag (such as a system library compiled with Visual
C++) can be referenced from code compiled
using the flag, meaning that the
referencing code will use the inline definitions instead of importing them from
the DLL.

Also note that like when using -fvisibility-inlines-hidden, the address of
S::foo() will be different inside and outside the DLL, breaking the C/C++
standard requirement that functions have a unique address.

The flag does not apply to explicit class template instantiation definitions or
declarations, as those are typically used to explicitly provide a single
definition in a DLL, (dllexported instantiation definition) or to signal that
the definition is available elsewhere (dllimport instantiation declaration). It
also doesn’t apply to inline members with static local variables, to ensure
that the same instance of the variable is used inside and outside the DLL.

Using this flag can cause problems when inline functions that would otherwise
be dllexported refer to internal symbols of a DLL. For example:

void internal();



struct __declspec(dllimport) S {


https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id97
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#the-clang-option
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id98
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#the-zc-dllexportinlines-option


  void foo() { internal(); }

}


Normally, references to S::foo() would use the definition in the DLL from
which it was exported, and which presumably also has the definition of
internal(). However, when using /Zc:dllexportInlines-, the inline
definition of S::foo() is used directly, resulting in a link error since
 internal() is not
available. Even worse, if there is an inline definition of
internal() containing a static local variable, we will now refer to a
different instance of that
variable than in the DLL:

inline int internal() { static int x; return x++; }



struct __declspec(dllimport) S {

  int foo() { return internal(); }

}


This could lead to very subtle bugs. Using -fvisibility-inlines-hidden can
lead to the same issue. To avoid it in this case, make S::foo() or
 internal()
non-inline, or mark them dllimport/dllexport explicitly.

The /fallback Option ¶

When clang-cl is run with the /fallback option, it will first try to
compile files itself. For any file that it fails to compile, it will fall back
and try to
compile the file by invoking cl.exe.

This option is intended to be used as a temporary means to build projects where
clang-cl cannot successfully compile all the files. clang-cl may fail
to compile
a file either because it cannot generate code for some C++ feature, or because
it cannot parse some Microsoft language extension.

© Copyright 2007-2020, The Clang Team.
Created using Sphinx 1.8.5.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#id99
https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#the-fallback-option
http://sphinx-doc.org/

