
e2 studio Project – LLVM for Renesas RL78 User Manual

LLVM for Renesas RL78 User Manual – 1

•
•

•
•

•
•
•
•

•
•
•
•
•
•
•
•

•
•

•
•

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•
•
•
•
•
•
•
•
•

LLVM for Renesas RL78 User Manual

Introduction
Specific extensions for RL78

Command options
Extensions to the C language family

Predefined Target Macros
Keywords
Attributes
Pragmas

#pragma interrupt [(]interrupt-handler-name[(interrupt-specification [,...])][)]
#pragma interrupt_brk [(]interrupt-handler-name[(interrupt-specification[,...])][)]
#pragma clang section [section-type]="[new-section-name]"
#pragma inline/noinline [(]function-name [,...][)]
#pragma saddr [(]variable-name[,...][)]
#pragma inline_asm [(]function-name [,...][)]
#pragma address [(]variable-name=absolute-address[,...][)]
#pragma callt [(]function-name[,...][)]

Built-in / Embedded Functions
Compatibility with GCC RL78

GCC RL78 target specific differences
Linker script compatibility

RL78 specific linker script requirements
Command Line options compatibility

Overall options
C language options
C++ language options
Language independent options
Warning options
C-only Warning Options
Debugging options
Preprocessor Options
Assembler options
Directory Options
Linker Options
Optimization options
Tool options

llvm-objdump compatibility with rl78-elf-objdump
Assembler compatibility

.eqv symbol, expression

.fail expression

.hword

.lflags

.string8 "str", .string16, 32, 64

.stabd, .stabn, .stabs

.mri val

.gnu_attribute tag,value

.func name[,label], .endfunc

.vtable_entry table, offset

.vtable_inherit child, parent

e2 studio Project – LLVM for Renesas RL78 User Manual

Introduction – 2

•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•

•
•
•

•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

.loc_mark_labels enable
Listing Directives: .list, .nolist, .eject, .psize lines , columns, .sbttl "subheading", .title
"heading"

C Language compatibility
Nested Functions
Constructing Calls
Pointer Arguments in Variadic Functions
Attributes
Vector Extensions
Miscellaneous Builtin functions
Bitfields
Extended Asm

C++ Language compatibility
Extracting the function pointer from a bound pointer to member function
Namespace Association

ABI compatibility with GCC RL78
Compatibility with CCRL

Assembler compatibility
Operators and directives
Assembler generated symbols

ABI compatibility with CC-RL
Libgen

Introduction
LLVM is an open source compiler just like GCC. It provides it's own frontend, Clang, for the C family of programming
languages. In addition to language standards defined by ISO/IEC, Clang supports a broad variety of language
extensions for compatibility with GCC and other compilers.

For information on how to use the toolchain please read the appropriate user manuals provided along with this file:

Inside the Doc directory of your toolchain installation folder:

Clang Compiler User’s Manual — Clang 10 documentation

Inside the Tools Command Guide directory:

ClangFormat — Clang 10 documentation
LLVM Command Guide — LLVM 10 documentation
llvm-addr2line - a drop-in replacement for addr2line — LLVM 10 documentation
llvm-ar - LLVM archiver — LLVM 10 documentation
llvm-cxxfilt - LLVM symbol name demangler — LLVM 10 documentation
llvm-dwarfdump - dump and verify DWARF debug information — LLVM 10 documentation
llvm-nm - list LLVM bitcode and object file’s symbol table — LLVM 10 documentation
llvm-objcopy - object copying and editing tool — LLVM 10 documentation
llvm-objdump - LLVM’s object file dumper — LLVM 10 documentation
llvm-ranlib - generates an archive index — LLVM 10 documentation
llvm-readelf - GNU-style LLVM Object Reader — LLVM 10 documentation
llvm-readobj - LLVM Object Reader — LLVM 10 documentation
llvm-size - print size information — LLVM 10 documentation
llvm-strings - print strings — LLVM 10 documentation
llvm-strip - object stripping tool — LLVM 10 documentation
llvm-symbolizer - convert addresses into source code locations — LLVM 10 documentation

OR visit the online version of the manuals:

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 3

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/index.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-symbolizer.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-dwarfdump.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-readobj.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-addr2line.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-ar.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-cxxfilt.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-nm.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-objcopy.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-objdump.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-ranlib.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-readelf.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-size.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-objdump.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-strip.html

The majority of the features are described in the User manual above are available for RL78 as well. However some
features presented in the above manuals are not available for RL78 in which case the compiler will signal this the
following way:

clang: error: unsupported option '...' for target 'rl78'

Specific extensions for RL78

Command options
-fsim
Links in additional target libraries to support operation within GDB simulator.

-mcpu=S1
-mcpu=S2
-mcpu=S3
Specifies the RL78 core to target, the default is the S3 core.
The S2 core does not have multiply or divide instructions, instead it uses a hardware peripheral for these operations
and the S1 core lacks hardware multiplication altogether(except the MULU instruction).
Thus specifying -mcpu=S2 or -mcpu=S1 disables the use of the multiplication instructions (MULHU, MULH, DIVHU,
DIVWU, MACHU, MACH) and software routines will be used instead.

-frenesas-extensions
Enables some CCRL extensions (see following sections) and specifications:
- renames sections .rodata/.frodata to .const/.constf
- when using #pragma clang section to specify custom section names, it appends _n or _f suffixes to the section
names, depending on the address space used
- enables CC-RL specific pragmas and modifies the syntax of others, see section 2.2.4 Pragmas
- this option cannot be used together with the -save-temps option

-frenesas-vaarg
Causes the promotion of __near pointers to __far pointers when they are passed as variable arguments.
In a future release, this option will be merged with the -frenesas-extensions option.
When omitted, pointers are passed without promotion.

https://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangFormat.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/index.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-symbolizer.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-dwarfdump.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-readobj.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-addr2line.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-ar.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-cxxfilt.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-nm.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-objcopy.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-objdump.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-ranlib.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-readelf.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-size.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-objdump.html
https://releases.llvm.org/10.0.0/docs/CommandGuide/llvm-strip.html

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 4

-m64bit-doubles
Makes the double data type to be represented on 64 bits, the default being 32 bits.

-mda-disable
Disables the generation of division/multiplication and multiply-accumulate unit (S2 core only).

-mfar-data
Global, non-const variables will be allocated to the far address space. Explicit address space qualifiers or the
__saddr qualifier override this.
Data pointers that point to non-const variables, without explicit address space qualifiers, will be far pointers.
If not specified, all variables without explicit address space qualifiers will be allocated to the near address space.

-mnear-data
Global, non-const variables will be allocated to the near address space. Explicit address space qualifiers or the
__saddr qualifier override this.
This is the default, even if this option is omitted.

-mfar-rom

Global, constant data variables without explicit address space qualifiers will be allocated to the far address space.
Pointers without explicit address space qualifiers that point to such variables will be far pointers.
If not specified, variables and pointers without explicit address space qualifiers will be near.

Support for far rom is still limited in the toolchain libraries. The following functions had their far rom
equivalents added: atof, atoff, atoi, atol, atoll, bsearch, gets, memchr, memcmp, memcpy, memmove, memset,
perror, puts, qsort, strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat, strncmp, strncpy, strpbrk, strrchr, strspn,
strstr, strtod, strtof, strtoimax, strtol, strtold, strtoll, strtoul, strtoull, strtoumax
Users can include <stdlib.h>, <stdio.h> or <string.h> and call these far versions directly or by using the -mfar-rom
command-line option, calls to the near versions of the functions will be replaced with calls to the far versions.
For example, if we have the following source code:

#include<string.h>
void foo(void *d, const void *s, size_t n){
 memcpy(d,s,n);
}

void bar(void __far *d, const void __far *s, size_t n){
 _COM_memcpy_ff(d,s,n);
}

clang -c test.c will generate the following assembly:

_foo:
 call !_memcpy
 ret
_bar:
 push ax
 xch a, h
 mov a, x
 xch a, h
 mov l, a
 movw ax, [sp+6]
 movw [sp+0], ax
 xch a, x
 mov a, h
 xch a, x
 mov a, l
 call !!__COM_memcpy_ff

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 5

 addw sp, #2
 ret

calling clang -c test.c -mfar-rom will result in the following code

_foo:
 subw sp, #4
 xch a, c
 mov [sp+2], a
 xch a, c
 push de
 pop bc
 movw de, ax
 movw ax, [sp+8]
 movw [sp+0], ax
 movw ax, de
 cmpw ax, #0
 bz $.LBB0_1
 movw hl, #15
 br $.LBB0_3
.LBB0_1:
 movw hl, #0
.LBB0_3:
 mov a, [sp+2]
 mov x, a
 mov a, l
 call !!__COM_memcpy_ff
 addw sp, #4
 ret

_bar:
 push ax
 xch a, h
 mov a, x
 xch a, h
 mov l, a
 movw ax, [sp+6]
 movw [sp+0], ax
 xch a, x
 mov a, h
 xch a, x
 mov a, l
 call !!__COM_memcpy_ff
 addw sp, #2
 ret

Please note that bar remained unchanged and foo address space casts it's first parameter before calling the far
version of the function.
The signatures of the far rom function versions can be seen below:

double _COM_atof_f(const char __far *nptr);
float _COM_atoff_f(const char __far *nptr);
int _COM_atoi_f(const char __far *nptr);
long int _COM_atol_f(const char __far *nptr);

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 6

•

•

•

long long int _COM_atoll_f(const char __far *nptr);
void __far * _COM_bsearch_f(const void __far *key, const void __far *base, size_t nmemb, size_t size, int (*compar)
(const void __far *, const void __far *));
char __far * _COM_gets_f(char __far *s);
void __far * _COM_memchr_f(const void __far *s, int c, size_t n);
int _COM_memcmp_ff(const void __far *s1, const void __far *s2, size_t n);
void __far * _COM_memcpy_ff(void __far * __restrict s1, const void __far * __restrict s2, size_t n);
void __far * _COM_memmove_ff(void __far *s1, const void __far *s2, size_t n);
void __far * _COM_memset_f(void __far *s, int c, size_t n);
void _COM_perror_f(const char __far *s);
int _COM_puts_f(const char __far *s);
void _COM_qsort_f(void __far *base, size_t nmemb, size_t size, int (*compar)(const void __far *, const void __far *));
char __far * _COM_strcat_ff(char __far * __restrict s1, const char __far * __restrict s2);
char __far * _COM_strchr_f(const char __far *s, int c);
int _COM_strcmp_ff(const char __far *s1, const char __far *s2);
char __far * _COM_strcpy_ff(char __far * __restrict s1, const char __far * __restrict s2);
size_t _COM_strcspn_ff(const char __far *s1, const char __far *s2);
size_t _COM_strlen_f(const char __far *s);
char __far * _COM_strncat_ff(char __far * __restrict s1, const char __far * __restrict s2, size_t n);
int _COM_strncmp_ff(const char __far *s1, const char __far *s2, size_t n);
char __far * _COM_strncpy_ff(char __far * __restrict s1, const char __far * __restrict s2, size_t n);
char __far * _COM_strpbrk_ff(const char __far *s1, const char __far *s2);
char __far * _COM_strrchr_f(const char __far *s, int c);
size_t _COM_strspn_ff(const char __far *s1, const char __far *s2);
char __far * _COM_strstr_ff(const char __far *s1, const char __far *s2);
double _COM_strtod_ff(const char __far * __restrict nptr, char __far * __far * __restrict endptr);
float _COM_strtof_ff(const char __far * __restrict nptr, char __far * __far * __restrict endptr);
intmax_t _COM_strtoimax_ff(const char __far * __restrict nptr, char __far * __far * __restrict endptr, int base);
long int _COM_strtol_ff(const char __far * __restrict nptr, char __far * __far * __restrict endptr, int base);
long double _COM_strtold_ff(const char __far * __restrict nptr, char __far * __far * __restrict endptr);
long long int _COM_strtoll_ff(const char __far * __restrict nptr, char __far * __far * __restrict endptr, int base);
unsigned long int _COM_strtoul_ff(const char __far * __restrict nptr, char __far * __far * __restrict endptr, int base);
unsigned long long int _COM_strtoull_ff(const char __far * __restrict nptr, char __far * __far * __restrict endptr, int
base);
uintmax_t _COM_strtoumax_ff(const char __far * __restrict nptr, char __far * __far * __restrict endptr, int base);

-mfar-code

This option changes the allocation of all functions, without an explicit address space, to __far.
Pointers to functions that have no address space specifiers will also become _far pointers.

Functions qualified explicitly or implicitly (as a result of this option) with __far will be placed in the .textf section,
which needs to be present in the linkerfile that is used during linking.
This option also disables the usage of the PLT, which was used to handle calls and jumps that are allocated over the
64KB limit.

When using the option, the following considerations should be made:

The linkerfile may require changes: there's no longer a need for the .plt section and the .textf section should
be specified.
Since __far function pointers are 4 bytes, any code relying on function pointers being 2 byte long will require
adjustments (for example startup code that iterates over an initializer function list).
When writing assembly code, to ensure correct linking, the .textf section should be declared with the correct
flags, as seen below:

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 7

.section .textf,#alloc,#execinstr
.global _foo
.type _foo,@function
_foo:
 ;rest of the function

Currently the -mfar-code option is only supported when compiling and linking C files, C++ is not supported.

When using the -mfar-code option, function typedefs can't have address space specifiers, nor can an address space
specifier applied later to them. This will be fixed in the next release.

-mnear-code
Default function pointers are near pointers and functions are allocated to the near address space.

-mllvm -use-section-attribute-in-outlined-functions
Instruct the compiler to only consider outlining of functions that are located in the same section.

void Func1() __attribute__((section(“SEC1”)));
void Func2() __attribute__((section(“SEC1”)));
void Func3();

Using -mllvm -use-section-attribute-in-outlined-functions will result in Func1 and Func2 being considered for
common code outlining.
Func3 will not be considered since it is in a different section.

As of version 202306, this is the default.

-Wl,-stride-dsp-memory-area

Instructs the linker to not allocate in the DSP memory area: [0xFD800, 0xFF000).

When not specified or with the -no-stride-dsp-memory-area option specified, the linker will allocate in the given
memory range too, if needed.

Extensions to the C language family

Predefined Target Macros
__ELF__
Defined: Always

__RL78__
Defined: Always

__RL78_S1__
Defined: if -mcpu=S1 is specified

__RL78_S2__
Defined: if -mcpu=S2 is specified

__RL78_S3__
Defined: if -mcpu=S3 is specified or the -mcpu option is omitted

__RL78_32BIT_DOUBLES__
Defined: if -m64bit-doubles is omitted

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 8

__RL78_64BIT_DOUBLES__
Defined: if -m64bit-doubles is specified

__FAR_ROM__
Defined: if -mfar-rom is specified

__RL78_SMALL__
Defined: if -mnear-code option is specified implicitly or explicitly. For details, see -mnear-code.

__RL78_MEDIUM__
Defined: if -mfar-code option is specified implicitly or explicitly. For details, see -mfar-code.

__CCRL__
Defined: if -frenesas-extensions is specified

__CCRL
Defined: if -frenesas-extensions is specified

__DBL4
Defined: if -frenesas-extensions is specified and -m64bit-doubles is omitted

__DBL8
Defined: if-frenesas-extensions and -m64bit-doubles is specified

__SCHAR
Defined: if -frenesas-extensions is specified and -funsigned-char is omitted

__UCHAR
Defined: if -frenesas-extensions and -funsigned-char is specified

__SBIT
Defined: if -frenesas-extensions is specified

__MDA_ENABLED__
Defined: if -mpcu=S2 is specified and -mdisable-mda is not specified

__MDA_DISABLED__
Defined: if both -mpcu=S2 and -mdisable-mda is specified

Keywords
__saddr
This specifies placement of the corresponding variable in the SADDR area, which can be accessed more efficiently
than the default memory region.
OBS. Available only when -frenesas-extensions option is passed to the compiler.

__callt
This specifies that the function should be called with the callt instruction.
OBS. Available only when -frenesas-extensions option is passed to the compiler.

__near
Variables qualified with it are accessed with 16-bit pointers. This is the default behavior, unless -mfar-data or -mfar-
rom is used to override it.

__far
Variables qualified with it are accessed with 32-bit pointers (20-bit addresses) rather than the default 16-bit
addresses.
Non-far variables are assumed to appear in the topmost 64 KiB of the address space.

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 9

__inline
This notifies the compiler of an inline function, which could be expanded inline at the location from which the
function is called.
It behaves according to C99.

__sectop/__secend
Section address operators:
 __sectop: returns the start address of the given section
 __secend: returns the end address + 1 of the given section
Usage:
 __sectop("section-name")
 __secend("section-name")
OBS. Available only when -frenesas-extensions option is passed to the compiler.

Attributes
saddr

USAGE: Variables
SYNTAX: __attribute__((saddr))
DESCRIPTION: This specifies placement of the corresponding variable in the SADDR area, which can be accessed
more efficiently than the default memory region.

callt

USAGE: Functions
SYNTAX: __attribute__((callt))
DESCRIPTION: This specifies that the function should be called with the callt instruction.

naked
USAGE: Functions
SYNTAX: __attribute__((naked))
DESCRIPTION: This attribute allows the compiler to construct the requisite function declaration, while allowing the
body of the function to be assembly code.
The specified function will not have prologue/epilogue sequences generated by the compiler.
Only basic asm statements can safely be included in naked functions.
While using extended asm or a mixture of basic asm and C code may appear to work, they cannot be depended
upon to work reliably and are not supported.

interrupt
USAGE: Functions
SYNTAX: __attribute__((interrupt))
__attribute__((interrupt([interrupt specification])))
DESCRIPTION: Indicates that the specified function is a hardware interrupt handler.
The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this
attribute is present.
See #pragma interrupt for details on the interrupt specification.

brk_interrupt
USAGE: Functions
SYNTAX: __attribute__((brk_interrupt))
__attribute__((brk_interrupt([interrupt specification])))
DESCRIPTION: Indicates that the specified function is a software interrupt handler, used for handlers with the BRK
opcode (i.e. those that must end with RETB instead of RETI).
See #pragma brk_interrupt for details on the interrupt specification.

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 10

Pragmas

#pragma interrupt [(]interrupt-handler-name[(interrupt-specification [,...])][)]
DESCRIPTION:
- Enabled when specifying -frenesas-extensions
- Indicates that the specified function is a hardware interrupt handler.
- A code for returning with RETI is generated with the target function definition.
- A stack or a register bank can be specified as the area for saving general registers.
- The interrupt handler definition is output to the .text or .textf section in the same way as normal function
definitions.
- When no register is used or no function is called in an interrupt handler, the instruction for switching register
banks is not output even if register bank switching is specified in #pragma interrupt.

USAGE:

The interrupt specifications can include the following:

vect=address
When specified, ___vector[address in decimal] label will be emitted at the location of the interrupt handler
function.
The emitted label can be referenced in the linkerscript, to be able to place the handler at the correct
memory location.
Address: Binary, octal, decimal, or hexadecimal constant
Only an even value within the range from 0x0 to 0x7c can be specified.
ex: vect=0x12 results in emitting ___vector18

bank={RB0|RB1|RB2|RB3}
Register bank for use by the interrupt handler.
Changing the register bank makes it unnecessary to save the values of general registers on the stack.
Note that ES and CS are saved on the stack.
When this setting is omitted, the general registers are saved on the stack.

enable={true|false}
If set to true, enables nested interrupts at the entry to a function, resulting in the EI instruction being
generated before the register saving code.
If set to false or omitted, the EI instruction is not generated.

EXAMPLES:

#pragma interrupt test0
#pragma interrupt test1(vect=0x12,bank=RB2,enable=true)

void test0(void) {
/*Interrupt processing*/
}

void test1(void) {
/*Interrupt processing*/
}

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 11

•

•

#pragma interrupt_brk [(]interrupt-handler-name[(interrupt-specification[,...])][)]
DESCRIPTION:

- Enabled when specifying -frenesas-extensions
- Indicates that the specified function is a software interrupt handler.
- A code for returning with RETB is generated with the target function definition.
- A stack or a register bank can be specified as the area for saving general registers.
- The interrupt handler definition is output to the .text or .textf section in the same way as normal function
definitions.
- When no register is used or no function is called in an interrupt handler, the instruction for switching register
banks is not output even if register bank switching is specified in #pragma interrupt.

USAGE:

The interrupt specifications can include the following:

bank={RB0|RB1|RB2|RB3}
Register bank for use by the interrupt handler.
Changing the register bank makes it unnecessary to save the values of general registers on the stack.
Note that ES and CS are saved on the stack.
When this setting is omitted, the general registers are saved on the stack.

enable={true|false}
If set to true, enables nested interrupts at the entry to a function, resulting in the EI instruction being
generated before the register saving code.
If set to false or omitted, the EI instruction is not generated.

EXAMPLE:

#pragma interrupt_brk test2(bank=RB3,enable=false)
void test2(void) {
/*Interrupt processing*/
}

#pragma clang section [section-type]="[new-section-name]"
DESCRIPTION:

- Assign a new section name that differs from the default name to a specified set of data or functions allows this set
of data or functions to be allocated to an address separate from that for other data or functions, and special
processing can be applied in section units.

USAGE:

Allowed section types are: [bss|data|rodata|text]

Default names of the sections by type are:

bss = ".bss"
data = ".data"
rodata = ".rodata" or ".const" if -frenesas-extensions is specified
text = ".text"

Note: Currently specifying #pragma clang section without section type=name pairs does not reset the section
names to their default.

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 12

When using -frenesas-extensions, the custom section names will have a suffix added to them, based on the
following rules:
- near section (.text, .const, .data, .bss): new section name + "_n"
- far section (.textf, .constf, .dataf, .bssf): new section name + "_f"
- saddr section (.sdata, .sbss): new section name + "_s"

Note: Currently explicitly resetting section names to their defaults will not work when using -frenesas-extensions

EXAMPLE:

const int c0;
int b0;
__far int b0_far;
int d0 = 3;

#pragma clang section rodata="C"
const int c1;
#pragma clang section bss="B" data="D" text="T"
int b1;
int d = 2;
#pragma clang section bss=".bss" data=".data" rodata=".rodata" text=".text" //reset default section names
const int c2;
int b2;
int d2 = 3;

#pragma inline/noinline [(]function-name [,...][)]
DESCRIPTION:

- Enabled when specifying -frenesas-extensions
- #pragma inline declares a function to be expanded inline.
- #pragma noinline disables inline expansion when using optimization -O3

EXAMPLE:

#pragma inline foo
int foo(int b) {
/* instructions will be inlined */
}

#pragma noinline bar
int bar(int b) {
/* instructions will not be inlined when using -O3 */
}

#pragma saddr [(]variable-name[,...][)]
DESCRIPTION:

- Enabled when specifying -frenesas-extensions
- Notifies the compiler of a variable that is to be assigned to the saddr area.
- Initialized variables are allocated to the .sdata section.
- Uninitialized variables are allocated to the .sbss section.

EXAMPLE:

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 13

#pragma saddr saddr_var
extern int saddr_var;
void func(void)
{
saddr_var = 0;
}

#pragma inline_asm [(]function-name [,...][)]
DESCRIPTION:

- Enabled when specifying -frenesas-extensions
- Allows usage of assembly instructions in the given function.
- Note: In the current release it will not inline the assembly instructions, contrary to it's CC-RL counterpart.

EXAMPLE:

int a;
#pragma inline_asm func
void func(int x)
{
movw !_a, ax
}

int main(void) {
func(3);
return a;
}

#pragma address [(]variable-name=absolute-address[,...][)]
DESCRIPTION:

- Enabled when specifying -frenesas-extensions
- Allows the specification of the absolute address where the variable will be allocated.

EXAMPLE:

#pragma address (io=0x0ffe00)
int io; //io is allocated to address 0x0ffe00

void func(void){
io = 12;
}

int main() {
func();
return io;
}

#pragma callt [(]function-name[,...][)]
DESCRIPTION:

- Enabled when specifying -frenesas-extensions
- Same as the __callt keyword or attribute, this specifies that the function should be called with the callt instruction.

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 14

EXAMPLE:

#pragma callt callt_func1
extern void callt_func1(void);
void func1(void)
{
callt_func1();
}

Built-in / Embedded Functions
unsigned int __mulu(unsigned char x, unsigned char y);
Executes 8-bit unsigned multiplication between x and y and returns a 16-bit result.

unsigned long __mului(unsigned int x, unsigned int y);
Executes 16-bit unsigned multiplication between x and y and returns a 32-bit result.

signed long __mulsi(signed int x, signed int y);
Executes 16-bit signed multiplication between x and y and returns a 32-bit result.

unsigned int __divui(unsigned int x, unsigned char y);
Executes unsigned division between x and y and returns a 16-bit result.
When divisor y is 0, 0xFFFF is returned.

unsigned long __divul(unsigned long x, unsigned int y);
Executes unsigned division between x and y and returns a 32-bit result.
When divisor y is 0, 0xFFFFFFFF is returned.

unsigned char __remui(unsigned int x, unsigned char y);
Executes unsigned remainder operation between x and y and returns a 8-bit result.
When divisor y is 0, the lower-order 8 bits of dividend x are returned.

void __builtin_rl78_mov1 (char *x, char b1, char y, char b2);
Moves bit b2 of y to bit b1 of x.

void __builtin_rl78_and1 (char *x, char b1, char y, char b2);
Executes AND between bit b2 of y and bit b1 of x, storing the result in bit b1 of x.

void __builtin_rl78_or1 (char *x, char b1, char y, char b2);
Executes OR between bit b2 of y and bit b1 of x, storing the result in bit b1 of x.

void __builtin_rl78_xor1 (char *x, char b1, char y, char b2);
Executes XOR between bit b2 of y and bit b1 of x, storing the result in bit b1 of x.

void __builtin_rl78_set1 (char *x, char b);
Sets bit b of x.

void __builtin_rl78_clr1 (char *x, char b);
Clears bit b of x.

void __builtin_rl78_not1 (char *x, char b);
Flips bit b of x.

char __builtin_rl78_ror1 (char x);
Rotates x to the right once.

char __builtin_rl78_rol1 (char x);
Rotates x to the left once.

e2 studio Project – LLVM for Renesas RL78 User Manual

Specific extensions for RL78 – 15

void __builtin_rl78_ei ();
__EI();
Execute the EI instruction.

void __builtin_rl78_di ();
__DI();
Execute the DI instruction.

char __builtin_rl78_pswie ();
Return the value of the Interrupt enable flag (IE) from the Program status word (PSW) register.

void __builtin_rl78_setpswisp (char);
Set the values of the In-service priority flags (ISP0 and ISP1) in the Program status word (PSW) register to the
argument value.

char __builtin_rl78_getpswisp ();
Return the values of the In-service priority flags (ISP0 and ISP1) from the Program status word (PSW) register.

void __halt();
Execute the HALT instruction.

void __stop();
Execute the STOP instruction.

void __brk();
Execute the BRK instruction.

void __nop();
Execute the NOP instruction.

unsigned char __rolb(unsigned char x, unsigned char y);
Rotates x to the left y times assuming that x has a size of eight bits

unsigned char __rorb(unsigned char x, unsigned char y);
Rotates x to the right y times assuming that x has a size of eight bits.

unsigned int __rolw(unsigned int x, unsigned char y);
Rotates x to the left y times assuming that x has a size of 16 bits.

unsigned int __rorw(unsigned int x, unsigned char y);
Rotates x to the right y times assuming that x has a size of 16 bits.

unsigned long long __mulul(unsigned long x, unsigned long y);
Executes signed multiplication between (unsigned long)x and (unsigned long)y and returns a 64-bit result.

signed long long __mulsl(signed long x, signed long y);
Executes signed multiplication between (signed long)x and (signed long)y and returns a 64-bit result.

unsigned int __remul(unsigned long x, unsigned int y);
Executes unsigned remainder operation between x and y and returns a 16-bit result.

unsigned long __macui(unsigned int x, unsigned int y, unsigned long z);
Executes unsigned multiply-accumulate operation (unsigned int) x * (unsigned int) y + z, and returns a 32-bit result.

signed long __macsi(signed int x, signed int y, signed long z);
Executes signed multiply-accumulate operation (signed int) x * (signed int) y + z, and returns a 32-bit result.

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 16

Compatibility with GCC RL78
Clang\LLVM is designed as straightforward replacement for GCC. It has already successfully replaced GCC in quite a
few projects.

The compatibility between LLVM and GCC can be seen in all aspects command line options, C/C++ extensions,
assembler directives.

That being said there still are some differences between LLVM and GCC which we will discuss in detail in the
following sections.

For further information on the compatibility between LLVM and GCC please check:

https://clang.llvm.org/compatibility.html

GCC RL78 target specific differences
No equivalent options for -msave-cs-in-interrupts, -msave-mduc-in-interrupts and -muse-es. Just like CCRL, LLVM
we can detect automatically which registers are used in the function so no need for such options to save those
registers all the time regardless is used/not used.

No exact equivalent option for -mes0. -mfar-rom is the similar option in LLVM RL78 which is implemented in a
similar way to CCRL's -far_rom option.

No -mg10, -mg13, -mg14, -mcpu=g10, -mcpu=g13, -mcpu=g14 alias options present. LLVM only provides the correct
core names for the -mcpu option (S1, S2, S3). The same is true for the corresponding predefined macros
__RL78_G10__, __RL78_G13, __RL78_G14__ which are not defined by LLVM RL78 instead the correct macros
(__RL78_S1__, __RL78_S2__, __RL78_S3__) should be used.

Linker script compatibility
LLD implements a large subset of the GNU ld linker script notation. The LLD implementation policy is to implement
linker script features as they are documented in the ld manual. It is consider a bug if the lld implementation does
not agree with the manual and it is not mentioned as an exception.

For further information on the compatibility between LLD and GNU LD linker script support please check:

https://lld.llvm.org/ELF/linker_script.html

RL78 specific linker script requirements
__data symbol indicates the start of RAM, must be 2-byte aligned. If __data is note defined, the linker will consider
that the start of RAM is at 0xfef00.

__end symbol indicates the start of heap, must be 128-byte aligned.

Command Line options compatibility
The majority of Clang options have the same name and functionality as they do in GCC. On top of those, in order to
facilitate migration from GCC, Clang has provided dummy implementations for those options: some GCC options
are ignored silently while in case other GCC options clang will issue an warning (similar to "warning: optimization
flag '....' is not supported [-Wignored-optimization-argument]")

https://clang.llvm.org/compatibility.html
https://sourceware.org/binutils/docs/ld/Scripts.html
https://lld.llvm.org/ELF/linker_script.html

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 17

Not all GCC options have dummy implementations in Clang so in same cases Clang will return an error for
unrecognized options:

clang.exe: error: unknown argument: ',,,'

Overall options
-pass-exit-codes

DESCRIPTION: Normally the gcc program exits with the code of 1 if any phase of the compiler returns a non-success
return code. If you specify '-pass-exit-codes', the gcc program instead returns with the numerically highest error
produced by any phase returning an error indication. The C, C++, and Fortran front ends return 4 if an internal
compiler error is encountered.

ALTERNATIVE: Not needed. Clang has different exit codes in case of error anyway, and tools like make only care if
the exit code is 0 or different from 0.

-wrapper

DESCRIPTION: Invoke all subcommands under a wrapper program. The name of the wrapper program and its
parameters are passed as a comma separated list.
ALTERNATIVE: Not needed. In a wrapper program is needed it can be written without any help from clang.

--target-help
DESCRIPTION: Print (on the standard output) a description of target-specific command-line options for each tool.
For some targets extra target-specific information may also be printed.
ALTERNATIVE: Not needed. clang has different help.

C language options
-aux-info filinename

DESCRIPTION: Output to the given filename prototyped declarations for all functions declared and/or defined in a
translation unit, including those in header files. This option is silently ignored in any language other than C.

ALTERNATIVE: Not needed. The option only outputs information in a file and is also ignored in any language other
than C.

-fallow-parameterless-variadic-functions

DESCRIPTION: Accept variadic functions without named parameters. Although it is possible to define such a
function, this is not very useful as it is not possible to read the arguments. This is only supported for C as this
construct is allowed by C++.

ALTERNATIVE: Not needed. As the description says this option is not useful in GCC either.

-fplan9-extensions

DESCRIPTION: Accept some non-standard constructs used in Plan 9 code. This enables '-fms-extensions', permits
passing pointers to structures with anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.

ALTERNATIVE: -fms-extensions + code modifications for the rest of non-standard constructs.

-traditional

DESCRIPTION: Formerly, this option caused GCC to attempt to emulate a pre-standard C compiler. It is now only
supported with the '-E' switch. The preprocessor continues to support a pre-standard mode.

ALTERNATIVE: Not needed. There's no support for pre-standard C in clang.

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 18

-fcond-mismatch

DESCRPTION: Allow conditional expressions with mismatched types in the second and third arguments. The value
of such an expression is void. This option is not supported for C++.
ALTERNATIVE: code modifications for non-standard constructs.

C++ language options
-fabi-version:

DESCRIPTION: Use version n of the C++ ABI.

ALTERNATIVE: Not needed, not applicable LLVM has a different C++ library.

-fno-enforce-eh-specs:

DESCRIPTION: Don’t generate code to check for violation of exception specifications at run time. This option
violates the C++ standard, but may be useful for reducing code size in production builds, much like defining
'NDEBUG'. This does not give user code permission to throw exceptions in violation of the exception specifications;
the compiler still optimizes based on the specifications, so throwing an unexpected exception results in undefined
behavior at run time.

ALTERNATIVE: Not needed, it violates C++ standard and can result in undefined behavior, code size reduction is
achieved through optimizations.

-fno-for-scope:

DESCRIPTION: If ‘-ffor-scope’ is specified, the scope of variables declared in a for-init-statement is limited to the
‘for’ loop itself, as specified by the C++ standard. If ‘-fno-for-scope’ is specified, the scope of variables declared in
a for-init-statement extends to the end of the enclosing scope, as was the case in old versions of G++, and other
(traditional) implementations of C++.
Alternative: No alternative, source code needs to be modified.

-fno-implicit-inline-templates:

DESCRIPTION: Don’t emit code for implicit instantiations of inline templates, either. The default is to handle inlines
differently so that compiles with and without optimization need the same set of explicit instantiations.

ALTERNATIVE: Not needed, clang a different way of implementing templates.

-fno-nonansi-builtins:

DESCRIPTION: Disable built-in declarations of functions that are not mandated by ANSI/ISO C. These include ffs,
alloca, _exit, index, bzero, conjf, and other related functions.

ALTERNATIVE: Not needed. Only affects generation of warning messages.

-fnothrow-opt:

DESCRIPTION: Treat a throw() exception specification as if it were a noexcept specification to reduce or eliminate
the text size overhead relative to a function with no exception specification. If the function has local variables of
types with non-trivial destructors, the exception specification actually makes the function smaller because the EH
cleanups for those variables can be optimized away. The semantic effect is that an exception thrown out of a
function with such an exception specification results in a call to terminate rather than unexpected.

ALTERNATIVE: Affects standard exception behavior, if code size is an issue due to exceptions exceptions can be
disabled altogether.

-fno-optional-diags:

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 19

DESCRIPTION: Disable diagnostics that the standard says a compiler does not need to issue. Currently, the only
such diagnostic issued by G++ is the one for a name having multiple meanings within a class.
ALTERNATIVE: Not needed, this is a option which controls warnings which do not affect output program in any way.
Clang has a different warning messaging system with different options.

-fno-pretty-templates:

DESCRIPTION: When an error message refers to a specialization of a function template, the compiler normally prints
the signature of the template followed by the template arguments and any typedefs or typenames in the signature
(e.g. void f(T) [with T = int] rather than void f(int)) so that it’s clear which template is involved. When an error
message refers to a specialization of a class template, the compiler omits any template arguments that match the
default template arguments for that template. If either of these behaviors make it harder to understand the error
message rather than easier, you can use '-fno-pretty-templates' to disable them.
ALTERNATIVE: Not needed. Clang has a different messaging system.

-frepo:

DESCRIPTION: Enable automatic template instantiation at link time. This option also implies '-fno-implicit-
templates'.

ALTERNATIVE: Not needed. Clang\LLVM has a different template implementation.

-fno-weak:

DESCRIPTION: Do not use weak symbol support, even if it is provided by the linker. By default, G++ uses weak
symbols if they are available. This option exists only for testing, and should not be used by end-users; it results in
inferior code and has no benefits. This option may be removed in a future release of G++.
ALTERNATIVE: Not needed. As stated above the option has no benefits.

-fvtable-verify, -fvtv-counts, -fvtv-debug:

DESCRIPTION: Debugging flags related to vtable verification.

ALTERNATIVE: Not needed. Useful for debugging GCC.

-fext-numeric-literals:

DESCRIPTION: Accept imaginary, fixed-point, or machine-defined literal number suffixes as GNU extensions. When
this option is turned off these suffixes are treated as C++11 user-defined literal numeric suffixes. This is on by
default for all pre-C++11 dialects and all GNU dialects: ‘-std=c++98’, ‘-std=gnu++98’, ‘-std=gnu++11’, ‘-std=gnu++1y’.
This option is off by default for ISO C++11 onwards (‘-std=c++11’, ...).

ALTERNATIVE: Not possible to support as it shadows C++11 and above user-defined literal numeric suffixes, source
code needs to updated.

-Wliteral-suffix, -Wnoexcept, -Wstrict-null-sentinel, -Wno-non-template-friend, -Wno-pmf-conversions:

DESCRIPTION: various control options over warning messages.

ALTERNATIVE: Not needed, warnings do not affect output program in any way. Clang has a different warning
messaging system with different options.

Language independent options
-fno-diagnostics-show-caret

DESCRIPTION: By default, each diagnostic emitted includes the original source line and a caret '^' indicating the
column. This option suppresses this information.

ALTERNATIVE: -fno-caret-diagnostics.

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 20

Warning options
-Waggressive-loop-optimizations. -Wclobbered, -Wconditionally-supported, -Wcoverage-mismatch, -Wno-format-
contains-nul, -Wno-free-nonheap-object, -Wjump-misses-init, -Wmaybe-uninitialized, -Wunsafe-loop-optimizations,
-Wlogical-op, -Wmaybe-uninitialized, -Wopenmp-simd, -Wpacked-bitfield-compat, -Wno-pedantic-ms-format,
-Wno-return-local-addr, -Wstack-usage=len, -Wsuggest-attribute=pure, -Wsync-nand, -Wtrampolines, -Wunsuffixed-
float-constants, -Wunused-but-set-parameter, -Wunused-but-set-variable, -Wuseless-cast, -Wvector-operation-
performance

DESCRIPTION: various control options over warning messages.

ALTERNATIVE: Not needed, warnings do not affect output program in any way. Clang has a different warning
messaging system with different options.

C-only Warning Options
-Wmissing-parameter-type

DESCRIPTION: A function parameter is declared without a type specifier in K&R-style functions.

ALTERNATIVE: -Wunused-parameter.

-Wtraditional, -Wtraditional-conversion, -Wold-style-declaration

DESCRIPTION: Related to pre-standard C which is not fully supported in GCC.

ALTERNATIVE: Not needed. There's no support for pre-standard C in clang.

Debugging options
-fdbg-cnt-list, -fdbg-cnt=counter-value-list, -dumpspecs, -fdump-noaddr, -fdump-unnumbered, -fdump-unnumbered-
links, -fdump-translation-unit[-n], -fdump-class-hierarchy[-n], -fdump-ipa-all, -fdump-ipa-cgraph, -fdump-ipa-inline,
-fdump-passes, -fdump-statistics, -fdump-tree-all, -fdump-tree-original[-n], -fdump-tree-optimized[-n], -fdump-tree-
cfg, -fdump-tree-alias, -fdump-tree-ch, -fdump-tree-ssa[-n], -fdump-tree-pre[-n], -fdump-tree-ccp[-n], -fdump-tree-
dce[-n], -fdump-tree-gimple[-raw], -fdump-tree-dom[-n], -fdump-tree-dse[-n], -fdump-tree-phiprop[-n], -fdump-tree-
phiopt[-n], -fdump-tree-forwprop[-n], -fdump-tree-copyrename[-n], -fdump-tree-nrv, -fdump-tree-vect, -fdump-tree-
sink, -fdump-tree-sra[-n], -fdump-tree-forwprop[-n], -fdump-tree-fre[-n], -fdump-tree-vtable-verify, -fdump-tree-vrp[-
n], -fdump-final-insns=file, -fcompare-debug-second, -fcompare-debug[=opts], -fmem-report, -fmem-report-wpa,
-fpre-ipa-mem-report, -fpost-ipa-mem-report, -fopt-info, -print-multi-os-directory, -print-sysroot, -gtoggle,

DESCRIPTION: Developer options for debugging GCC.

ALTERNATIVE: Not needed. They have no meaning to the user.

-feliminate-dwarf2-dups:

DESCRIPTION: Compress DWARF 2 debugging information by eliminating duplicated information about each
symbol. This option only makes sense when generating DWARF 2 debugging information with '-gdwarf-2'.

ALTERNATIVE: Not needed, program will still work correctly without this option. Clang\LLVM has a different
compression scheme, see -gz option.

-femit-class-debug-always:

DESCRIPTION: Instead of emitting debugging information for a C++ class in only one object file, emit it in all object
files using the class. This option should be used only with debuggers that are unable to handle the way GCC
normally emits debugging information for classes because using this option increases the size of debugging

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 21

information by as much as a factor of two.
ALTERNATIVE: Not needed. This option should be used only with debuggers that are unable to handle the way GCC
normally emits debugging information for classes.

-fstack-usage:

DESCRIPTION: Makes the compiler output stack usage information for the program, on a per-function basis. The
filename for the dump is made by appending '.su' to the auxname. auxname is generated from the name of the
output file, if explicitly specified and it is not an executable, otherwise it is the basename of the source file. An entry
is made up of three fields:
the name of the function, a number of bytes, one or more qualifiers: static, dynamic, bounded.
ALTERNATIVE: -fstack-size-section in clang to emit stack size metadata and use llvm-readelf --stack-sizes <elf file>
to emit stack usage information for the whole program.

-fvar-tracking, -fvar-tracking-assignments:

DESCRIPTION: Those flags affect the quality of the debug information, enabled by default on certain optimization
level.

ALTERNATIVE: Not needed, clang emits high quality debug information without any extra options being required.

-gstabs, -gstabs+

DESCRIPTION: Produces debugging information in stabs format.

ALTERNATIVE: Not needed. Even in case of GCC RL78 we only support DWARF.

-fno-merge-debug-strings:

DESCRIPTION: Direct the linker to not merge together strings in the debugging information that are identical in
different object files. Merging is not supported by all assemblers or linkers. Merging decreases the size of the debug
information in the output file at the cost of increasing linkprocessing time. Merging is enabled by default.

ALTERNATIVE: Not needed, program will still work correctly without this option. Clang\LLVM has a different
compression scheme, see -gz option.

-femit-struct-debug-baseonly:

DESCRIPTION: Emit debug information for struct-like types only when the base name of the compilation source file
matches the base name of file in which the struct is defined. This option substantially reduces the size of debugging
information, but at significant potential loss in type information to the debugger.

ALTERNATIVE: Not needed, reduces debug information size however it affects quality of the debug information.
Clang\LLVM has a different compression scheme, see -gz option.

-femit-struct-debug-reduced:

DESCRIPTION: Emit debug information for struct-like types only when the base name of the compilation source file
matches the base name of file in which the type is defined, unless the struct is a template or defined in a system
header.

ALTERNATIVE: Not needed, reduces debug information size however it affects quality of the debug information.
Clang\LLVM has a different compression scheme, see -gz option.

Preprocessor Options
-dN:
DESCRIPTION: Instead of the normal output, generate a list of '#define' directives for all the predefined macros. This
gives you a way of finding out what is predefined in your version of the preprocessor.

ALTERNATIVE: -dD.

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 22

-imultilib dir:
DESCRIPTION: Use dir as a subdirectory of the directory containing target-specific C++ headers.

ALTERNATIVE: Not needed. Clang\LLVM has a different multilib dir.

-fdebug-cpp:

DESCRIPTION: This option is only useful for debugging GCC. When used with '-E', dumps debugging information
about location maps. Every token in the output is preceded by the dump of the map its location belongs to.

ALTERNATIVE: Not needed, Is only useful for debugging GCC.

-ftrack-macro-expansion:

DESCRIPTION: Track locations of tokens across macro expansions. This allows the compiler to emit diagnostic
about the current macro expansion stack when a compilation error occurs in a macro expansion. Using this option
makes the preprocessor and the compiler consume more memory. The level parameter can be used to choose the
level of precision of token location tracking thus decreasing the memory consumption if necessary. Value '0' of level
de-activates this option just as if no '-ftrack-macro-expansion' was present on the command line. Value '1' tracks
tokens locations in a degraded mode for the sake of minimal memory overhead. In this mode all tokens resulting
from the expansion of an argument of a function-like macro have the same location. Value '2' tracks tokens
locations completely. This value is the most memory hungry. When this option is given no argument, the default
parameter value is '2'. Note that -ftrack-macro-expansion=2 is activated by default.
ALTERNATIVE: Not needed, clang emits diagnostic information about macro expansion stack without any extra
options being required.

-fworking-directory:

DESCRIPTION: Enable generation of linemarkers in the preprocessor output that will let the compiler know the
current working directory at the time of preprocessing. When this option is enabled, the preprocessor will emit,
after the initial linemarker, a second linemarker with the current working directory followed by two slashes. GCC
will use this directory, when it’s present in the preprocessed input, as the directory emitted as the current working
directory in some debugging information formats. This option is implicitly enabled if debugging information is
enabled, but this can be inhibited with the negated form '-fno-working-directory'. If the '-P' flag is present in the
command line, this option has no effect, since no #line directives are emitted whatsoever.

ALTERNATIVE: Not needed, clang emits correct debug information in regards to the directory without any extra
options being required.

-remap:
DESCRIPTION: Enable special code to work around file systems which only permit very short file names, such as MS-
DOS.

ALTERNATIVE: Not needed, there's no support for MS-DOS or similar OS.

Assembler options
-a[sub-option...]
DESCRIPTION: turn on listings
ALTERNATIVE: Not supported

--listing-lhs-width
DESCRIPTION: set the width in words of the output data column of the listing
ALTERNATIVE: Not supported

--listing-lhs-width2
DESCRIPTION: set the width in words of the continuation lines of the output data column; ignored if smaller than

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 23

the width of the first line
ALTERNATIVE: Not supported

--listing-rhs-width
DESCRIPTION: set the max width in characters of the lines from the source file
ALTERNATIVE: Not supported

--listing-cont-lines
DESCRIPTION: set the maximum number of continuation lines used for the output data column of the listing
ALTERNATIVE: Not supported

-D
DESCRIPTION: produce assembler debugging messages
ALTERNATIVE: Not supported

--debug-prefix-map OLD=NEW
DESCRIPTION: map OLD to NEW in debug information
ALTERNATIVE: -fdebug-prefix-map

--gstabs
DESCRIPTION: generate STABS debugging information
ALTERNATIVE: Not supported

--gstabs+
DESCRIPTION: generate STABS debug info with GNU extensions
ALTERNATIVE: Not supported

--gdwarf-sections
DESCRIPTION: generate per-function section names for DWARF line information
ALTERNATIVE: Not supported

-L,-keep-locals
DESCRIPTION: keep local symbols (e.g. starting with `L')
ALTERNATIVE: Not supported

--strip-local-absolute
DESCRIPTION: strip local absolute symbols
ALTERNATIVE: Not supported

--warn
DESCRIPTION: don't suppress warnings
ALTERNATIVE: Not supported

--fatal-warnings
DESCRIPTION: treat warnings as errors
ALTERNATIVE: Supported

-J
DESCRIPTION: don't warn about signed overflow
ALTERNATIVE: Not supported

-K
DESCRIPTION: warn when differences altered for long displacements
ALTERNATIVE: Not supported

-Z
DESCRIPTION: generate object file even after errors
ALTERNATIVE: Not supported

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 24

--alternate
DESCRIPTION: initially turn on alternate macro syntax
ALTERNATIVE: Not supported

-f
DESCRIPTION: skip whitespace and comment preprocessing
ALTERNATIVE: Not supported

--hash-size=<value>
DESCRIPTION: set the hash table size close to <value>
ALTERNATIVE: Not supported

-M, -mri
DESCRIPTION: assemble in MRI compatibility mode
ALTERNATIVE: Not supported

--size-check=[error|warning]
DESCRIPTION: ELF .size directive check (default --size-check=error)
ALTERNATIVE: Not supported

--traditional-format
DESCRIPTION: Use same format as native assembler when possible
ALTERNATIVE: Not supported

-R
DESCRIPTION: fold the data section into the text section
ALTERNATIVE: Not supported

--reduce-memory-overheads
DESCRIPTION: prefer smaller memory use at the cost of longer assembly times
ALTERNATIVE: Not supported

--MD FILE
DESCRIPTION: write dependency information in FILE (default none)
ALTERNATIVE: Not supported

--defsym SYM=VAL
DESCRIPTION: define symbol SYM to given value
ALTERNATIVE: Not supported

--execstack
DESCRIPTION: require executable stack for this object
ALTERNATIVE: Not supported

Directory Options
-iplugindir=dir, -specs=file

DESCRIPTION: Those options are used to modify the behavior of the compiler using plugins and are useful for GCC
developers only.

ALTERNATIVE: Not needed, useful only for GCC developers.

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 25

Linker Options
-static-libasan, -static-libtsan, -static-liblsan, -static-libubsan, -static-libstdc++
DESCRIPTION: Sanitizer support, not working for RL78.
ALTERNATIVE: clang has different sanitizers (see -fsanitize=...)

--no-keep-memory
DESCRIPTION: Use less memory and more disk I/O
ALTERNATIVE: Not supported

--reduce-memory-overheads
DESCRIPTION: Reduce memory overheads, possibly taking much longer
ALTERNATIVE: Not supported

--relax
DESCRIPTION: Reduce code size by using target specific optimizations
ALTERNATIVE: Not supported

--no-relax
DESCRIPTION: Do not use relaxation techniques to reduce code size
ALTERNATIVE: Not supported

--strip-discarded
DESCRIPTION: Strip symbols in discarded sections
ALTERNATIVE: Not supported

--no-strip-discarded
DESCRIPTION: Do not strip symbols in discarded sections
ALTERNATIVE: Not supported

--split-by-file [=SIZE]
DESCRIPTION: Split output sections every SIZE octets
ALTERNATIVE: Not supported

--split-by-reloc [=COUNT]
DESCRIPTION: Split output sections every COUNT relocs
ALTERNATIVE: Not supported

--section-start SECTION=ADDRESS
DESCRIPTION: Set address of named section only address
ALTERNATIVE: Supported

-Ttext-segment ADDRESS
DESCRIPTION: Set address of text segment
ALTERNATIVE: Not supported, use --section-start instead

-Trodata-segment ADDRESS
DESCRIPTION: Set address of rodata segment
ALTERNATIVE: Not supported, use --section-start instead

-Tldata-segment ADDRESS
DESCRIPTION: Set address of ldata segment
ALTERNATIVE: Not supported, use --section-start instead

--target-help
DESCRIPTION: Display target specific options
ALTERNATIVE: Not supported

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 26

--stats
DESCRIPTION: Print memory usage statistics
ALTERNATIVE: Silently ignored

-V
DESCRIPTION: Print version and emulation information
ALTERNATIVE: Supported

--print-output-format
DESCRIPTION: Print default output format
ALTERNATIVE: Not supported

--warn-constructors
DESCRIPTION: Warn if global constructors/destructors are seen
ALTERNATIVE: Not supported

--warn-multiple-gp
DESCRIPTION: Warn if the multiple GP values are used
ALTERNATIVE: Not supported

--warn-once
DESCRIPTION: Warn only once per undefined symbol
ALTERNATIVE: Silently ignored

--warn-orphan
DESCRIPTION: Warn if any orphan sections are encountered
ALTERNATIVE: --orphan-handling=warn

--no-warn-orphan
DESCRIPTION: Do not warn if orphan sections are encountered (default)
ALTERNATIVE: Omitted or --orphan-handling=place

--warn-section-align
DESCRIPTION: Warn if start of section changes due to alignment
ALTERNATIVE: Not supported

--warn-alternate-em
DESCRIPTION: Warn if an object has alternate ELF machine code
ALTERNATIVE: Not supported

--ignore-unresolved-symbol SYMBOL
DESCRIPTION: Unresolved SYMBOL will not cause an error or warning
ALTERNATIVE: Not supported

--no-warn-mismatch
DESCRIPTION: Don't warn about mismatched input files
ALTERNATIVE: Silently ignored

--no-warn-search-mismatch
DESCRIPTION: Don't warn on finding an incompatible library
ALTERNATIVE: Not supported

--sort-common [=ascending|descending]
DESCRIPTION: Sort common symbols by alignment [in specified order]
ALTERNATIVE: Silently ignored

--sort-section name|alignment
DESCRIPTION: Sort sections by name or maximum alignment
ALTERNATIVE: Not supported

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 27

-z common-page-size=SIZE
DESCRIPTION: Set common page size to SIZE
ALTERNATIVE: Not supported

-z defs
DESCRIPTION: Report unresolved symbols in object files.
ALTERNATIVE: Supported

-z execstack
DESCRIPTION: Mark executable as requiring executable stack
ALTERNATIVE: Supported

-z max-page-size=SIZE
DESCRIPTION: Set maximum page size to SIZE
ALTERNATIVE: Supported

-z noexecstack
DESCRIPTION: Mark executable as not requiring executable stack
ALTERNATIVE: Supported

-b TARGET, --format TARGET
DESCRIPTION: Specify the input format for following input files
ALTERNATIVE: Supported (default, elf, binary)

-R FILE, --just-symbols FILE
DESCRIPTION: Just link symbols (if directory, same as --rpath)
ALTERNATIVE: Supported

--unique [=SECTION]
DESCRIPTION: Don't merge input [SECTION | orphan] sections
ALTERNATIVE: Not supported

-Ur
DESCRIPTION: Build global constructor/destructor tables
ALTERNATIVE: Not supported

--hash-size=<NUMBER>
DESCRIPTION: Set default hash table size close to <NUMBER>
ALTERNATIVE: Not supported

--default-symver
DESCRIPTION: Create default symbol version
ALTERNATIVE: Not supported

--default-imported-symver
DESCRIPTION: Create default symbol version for imported symbols
ALTERNATIVE: Not supported

--task-link SYMBOL
DESCRIPTION: Do task level linking
ALTERNATIVE: Not supported

--version-exports-section SYMBOL
DESCRIPTION: Take export symbols list from .exports, using SYMBOL as the version.
ALTERNATIVE: Not supported

-c FILE, --mri-script FILE
DESCRIPTION: Read MRI format linker script
ALTERNATIVE: Not supported

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 28

--default-script FILE, -dT
DESCRIPTION: Read default linker script
ALTERNATIVE: -T can be used to specify a non-default linkerscript

--force-exe-suffix
DESCRIPTION: Force generation of file with .exe suffix
ALTERNATIVE: Not supported

--traditional-format
DESCRIPTION: Use same format as native linker
ALTERNATIVE: Not supported

-defsym=<symbol>=<value>
DESCRIPTION: Define a symbol alias
ALTERNATIVE: -defsym SYMBOL=EXPRESSION

-fini=<symbol>
DESCRIPTION: Specify a finalizer function
ALTERNATIVE: --fini=SYMBOL

-init SYMBOL
DESCRIPTION: Call SYMBOL at load-time
ALTERNATIVE: --init=<symbol> Specify an initializer function

--no-undefined
DESCRIPTION: Do not allow unresolved references in object files
ALTERNATIVE: lld has this options only for shared objects

--demangle [=STYLE]
DESCRIPTION: Demangle symbol names [using STYLE]
ALTERNATIVE: Supported, but STYLE can't be selected.

Optimization options
-faggressive-loop-optimizations, -falign-jumps, -falign-labels, -falign-loops, -fauto-inc-dec, -fbranch-probabilities,
-fbranch-target-load-optimize, -fbtr-bb-exclusive, -fcaller-saves, -fcheck-data-deps, -fcombine-stack-adjustments,
-fconserve-stack, -fcompare-elim, -fcprop-registers, -fcrossjumping, -fcse-follow-jumps, -fcse-skip-blocks, -fcx-fortran-
rules, -fcx-limited-range, -fdce, -fdevirtualize, -fdevirtualize-speculatively, -fdse, -fearly-inlining, -fipa-sra, -fexpensive-
optimizations, -ffat-lto-objects, -ffloat-store, -fexcess-precision=style, -fforward-propagate, -fgcse, -fgcse-after-reload,
-fgcse-las, -fgcse-lm, -fgraphite-identity, -fgcse-sm, -fhoist-adjacent-loads, -fif-conversion, -fif-conversion2, -findirect-
inlining, -finline-functions-called-once, -finline-small-functions, -fipa-cp, -fipa-cp-clone, -fipa-pta, -fipa-profile, -fipa-
pure-const, -fipa-reference, -fira-algorithm=algorithm, -fira-region=region, -fira-hoist-pressure, -fira-loop-pressure,
-fno-ira-share-save-slots, -fno-ira-share-spill-slots, -fisolate-erroneous-paths-dereference, -fisolate-erroneous-paths-
attribute, -fivopts, -fkeep-inline-functions, -fkeep-static-consts, -flive-range-shrinkage, -floop-block, -floop-
interchange, -floop-strip-mine, -floop-nest-optimize, -floop-parallelize-all, -flto-partition=alg, -flto-report, -flto-report-
wpa, -fmerge-constants, -fmodulo-sched, -fmodulo-sched-allow-regmoves, -fmove-loop-invariants, -fno-branch-count-
reg, -fno-defer-pop, -fno-function-cse, -fno-guess-branch-probability, -fno-peephole, -fno-peephole2, -fno-sched-
interblock, -fno-sched-spec, -fno-toplevel-reorder, -fpartial-inlining, -fpeel-loops, -fpredictive-commoning, -fprofile-
report, -fprofile-correction, -fprofile-values, -fprofile-reorder-functions, -free, -frename-registers, -freorder-blocks,
-freorder-blocks-and-partition, -freorder-functions, -frerun-cse-after-loop, -freschedule-modulo-scheduled-loops,
-frounding-math, -fsched2-use-superblocks, -fsched-pressure, -fsched-spec-load, -fsched-spec-load-dangerous,
-fsched-stalled-insns-dep[=n], -fsched-stalled-insns[=n], -fsched-group-heuristic, -fsched-critical-path-heuristic,
-fsched-spec-insn-heuristic, -fsched-rank-heuristic, -fsched-last-insn-heuristic, -fsched-dep-count-heuristic, -fselective-
scheduling, -fselective-scheduling2, -fsel-sched-pipelining, -fsel-sched-pipelining-outer-loops, -fshrink-wrap,

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 29

-fsignaling-nans, -fsingle-precision-constant, -fsplit-ivs-in-unroller, -fsplit-wide-types, -fthread-jumps, -ftracer, -ftree-
bit-ccp, -ftree-builtin-call-dce, -ftree-ccp, -ftree-ch, -ftree-coalesce-vars, -ftree-copy-prop, -ftree-copyrename, -ftree-
dce, -ftree-dominator-opts, -ftree-dse, -ftree-forwprop, -ftree-fre, -ftree-loop-if-convert, -ftree-loop-if-convert-stores,
-ftree-loop-im, -ftree-phiprop, -ftree-loop-distribution, -ftree-loop-distribute-patterns, -ftree-loop-ivcanon, -ftree-loop-
linear, -ftree-loop-optimize, -ftree-loop-vectorize, -ftree-pre, -ftree-partial-pre, -ftree-pta, -ftree-reassoc, -ftree-sink,
-ftree-sra, -ftree-switch-conversion, -ftree-tail-merge, -ftree-ter, -ftree-vrp, -funroll-all-loops, -funsafe-loop-
optimizations, -funswitch-loops, -fvariable-expansion-in-unroller, -fvect-cost-model, -fvpt, -fweb, -fuse-linker-plugin

DESCRIPTION: All of the options are optimization related and there’s a reasonable expectation that llvm has
different optimization passes and options.

ALTERNATIVE: Not needed.

 Tool options

 llvm-objdump compatibility with rl78-elf-objdump
-i
DESCRIPTION: List object formats and architectures supported
ALTERNATIVE: --version

-g
DESCRIPTION: Display debugging information
ALTERNATIVE: --dwarf

Assembler compatibility
The integrated assembler in clang supports the majority of directives defined by the GNU assembler. However there
are a few differences which are discussed in detail below.

.eqv symbol, expression
DESCRIPTION: The .eqv directive is like .equiv, but no attempt is made to evaluate the expression or any part of it
immediately. Instead each time the resulting symbol is used in an expression, a snapshot of its current value is
taken.
ALTERNATIVE: Replace with .equiv

.fail expression
DESCRIPTION: -Generates an error or a warning. If the value of the expression is 500 or more, as will print a warning
message. If the value is less than 500, as will print an error message. The message will include the value of
expression. This can occasionally be useful inside complex nested macros or conditional assembly.
ALTERNATIVE: Use .warning and .error

.hword
DESCRIPTION: This expects zero or more expressions, and emits a 16 bit number for each.
This directive is a synonym for '.short'; depending on the target architecture, it may also be a synonym for '.word'.
ALTERNATIVE: use .short

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 30

.lflags
DESCRIPTION: AS accepts this directive, for compatibility with other assemblers, but ignores it.
ALTERNATIVE: not needed since it is ignored

.string8 "str", .string16, 32, 64
DESCRIPTION: Copy the characters in str to the object file. You may specify more than one string to copy, separated
by commas. Unless otherwise specified for a particular machine, the assembler marks the end of each string with a
0 byte. You can use any of the escape sequences described in Strings.
The variants string16, string32 and string64 differ from the string pseudo opcode in that each 8-bit character from
str is copied and expanded to 16, 32 or 64 bits respectively. The expanded characters are stored in target
endianness byte order.
ALTERNATIVE: .string8 same as .string and the others can be written in terms of .string
.string32 "BYE"
expands to:
.string "B\0\0\0Y\0\0\0E\0\0\0" /* On little endian targets. */
.string "\0\0\0B\0\0\0Y\0\0\0E" /* On big endian targets. */

.stabd, .stabn, .stabs
DESCRIPTION: There are three directives that begin '.stab'. All emit symbols, for use by symbolic debuggers. The
symbols are not entered in the as hash table: they cannot be referenced elsewhere in the source file.
ALTERNATIVE: Not needed. From the description .stabd, .stabn, .stabs are related to "stabs" debugging format,
even in case of GCC RL78 we only support DWARF so those directives shouldn't appear in any GCC project either.

.mri val
DESCRIPTION: If val is non-zero, this tells as to enter MRI mode. If val is zero, this tells as to exit MRI mode. This
change affects code assembled until the next .mri directive, or until the end of the file.
ALTERNATIVE: Not needed. .mri changes to syntax to MRI mode which is specific for Motorola M68K and this has
nothing to do with RL78

.gnu_attribute tag,value
DESCRIPTION: .gnu_attribute records a GNU object attribute for this file.
ALTERNATIVE: Not needed. .gnu_attribute is an object attribute which was developed as part of the ABI for the ARM
Architecture

.func name[,label], .endfunc
DESCRIPTION: .func emits debugging information to denote function name, and is ignored unless the file is
assembled with debugging enabled. Only '--gstabs[+]' is currently supported. label is the entry point of the function
and if omitted name prepended with the 'leading char' is used. 'leading char' is usually _ or nothing, depending on
the target. All functions are currently defined to have void return type. The function must be terminated
with .endfunc.
ALTERNATIVE: Not needed. These directives are related to stabs debugging format, not relevant for us (we use
DWARF)

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 31

.vtable_entry table, offset
DESCRIPTION: This directive finds or creates a symbol table and creates a VTABLE_ENTRY relocation for it with an
addend of offset.
ALTERNATIVE: Not needed. This directive is related to vtable in C++ and there is no clear example on how to do this
from assembler.

.vtable_inherit child, parent
DESCRIPTION: This directive finds the symbol child and finds or creates the symbol parent and then creates a
VTABLE_INHERIT relocation for the parent whose addend is the value of the child symbol. As a special case the
parent name of 0 is treated as referring to the ABS section.
ALTERNATIVE: Not needed. This directive is related to vtable in C++ and there is no clear example on how to do this
from assembler.

.loc_mark_labels enable
DESCRIPTION: When emitting DWARF2 line number information, the .loc_mark_labels directive makes the
assembler emit an entry to the .debug_line line number matrix with the basic_block register in the state machine
set whenever a code label is seen. The enable argument should be either 1 or 0, to enable or disable this function
respectively.
ALTERNATIVE: Not needed. .loc_mark_labels is used to change the basic block flag in DWARF2, this can be used
when user writes .dwarf 2 information himself which is highly unlikely. This means that the users can do this while
writing the actual information without this directive.

Listing Directives: .list, .nolist, .eject, .psize lines , columns, .sbttl
"subheading", .title "heading"
DESCRIPTION:

.list, .nolist: Control (in conjunction with the .nolist directive) whether or not assembly listings are generated. These
two directives maintain an internal counter (which is zero initially). .list increments the counter, and .nolist
decrements it. Assembly listings are generated whenever the counter is greater than zero.
.eject: Force a page break at this point, when generating assembly listings.
.psize lines , columns : This directive is used to declare the number of lines and, optionally, the number of columns
to use for each page, when generating listings.
.sbttl "subheading": Use subheading as the title (third line, immediately after the title line) when generating
assembly listings.

.title "heading": Use heading as the title (second line, immediately after the source file name and page number)
when generating assembly listings.

ALTERNATIVE: clang/llvm don't have any listing options at the moment. As the name suggest they are listing
directives and do not affect the behavior/correctness of the program as such they can be safely removed.

The listings can be obtained post-build with llvm-objdump.

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 32

C Language compatibility
Clang was intended to be compatible with GCC. In order to achieve this it has implemented the majority of GCC
extensions, it even went to such extent as to define all the GCC macros, like __GNUC__ for example, so any #ifdef
“gcc” #else “non-gcc” will be handled in the same way as with GCC. However there are some differences: some
generic (deviations from the ISO standard, like nested functions, in GCC which are not included in LLVM but those
are just a few and are considered bad practice anyway). The following is the the complete list of GCC C extensions
from GCC RL78 2020q2 release not supported in LLVM RL78 toolchain.

Nested Functions
Consider the following example:

foo (double a, double b)
{
double square(double z) { return z*z; }
return square (a) + square (b);
}
It is not clear what’s the origin of this extension, but the intention might be to make implement the equivalent of
private in C. If this is the case the recommendation is to declare the function as static (after it has been un-nested,
moved into the global scope). Like all non-ISO C extensions we don’t recommend it in GCC either.

The example on the left can be modified as follows:

double square(double z) { return z*z; }
foo (double a, double b)
{
return square (a) + square (b);
}

Constructing Calls
The GCC manual says:

"Using the built-in functions described below, you can record the arguments a function received, and call another
function with the same arguments, without knowing the number or types of the arguments ...

However, these built-in functions may interact badly with some sophisticated features or other extensions of the
language. It is, therefore, not recommended to use them outside very simple functions acting as mere forwarders
for their arguments."

void * __builtin_apply_args ();

void * __builtin_apply (void (*function)(), void *arguments, size_t size);

void __builtin_return (void *result),

__builtin_va_arg_pack ();

size_t __builtin_va_arg_pack_len ();

Based on the description GCC manual, those builtins there have limited usage and are not recommended except for
very simple cases.

There are other better, ISO C compliant, ways to write wrapper functions.

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 33

We don't recommend using this extension in GCC either.

Pointer Arguments in Variadic Functions
Pointer arguments of any pointer type:

va_arg (ap, void *)

The ISO C standard defines this undefined behavior as the compatibility between the actual argument and type
cannot be checked. This should be avoided.

Attributes
Function attributes not implemented in clang Clang: error, warning, externally_visible, leaf, no_icf, no_stack_limit,
optimize.

Label attributes not implemented in Clang: cold, hot apply only to functions.

Most of them are optimization related and there’s a reasonable expectation that llvm has different optimizations:

error warning: error/warning is returned if functions is not eliminated by optimizations; externally_visible disables
whole program optimization on the function; no_icf disable icf (identical code folding) on the function; optimize set
optimization options on the function; hot/cold tell the compiler if a particular path is likely/unlikely to be execute.

no_stack_limit -> llvm has other features to deal with the stack usage, we will investigate them as –Wstack-usage
used in e2 studio plugins is also not available.

Vector Extensions
Using vector instructions through built-in functions.

__builtin_shuffle

Clang has __builtin_shufflevector instead of __builtin_shuffle.

Please note this is not relevant for RL78 since there are no SIMD instructions in RL78.

Miscellaneous Builtin functions
__builtin_tgmath, __builtin_complex, __builtin_is_constant_evaluated, __builtin_drem, __builtin_dremf,
__builtin_dreml, __builtin_exp10, __builtin_exp10f, __builtin_expf, __builtin_exp10l, __builtin_expl,
__builtin_gamma, __builtin_fma, __builtin_gammaf, __builtin_gammal, __builtin_gamma_r, __builtin_gammaf_r,
__builtin_gammal_r, __builtin_j0, __builtin_j0f, __builtin_j0l, __builtin_j1, __builtin_j1f, __builtin_j1l, __builtin_jn,
__builtin_inf, __builtin_jnf, __builtin_jnl, __builtin_lgamma_r, __builtin_lgammaf_r, __builtin_lgammal_r,
__builtin_pow10, __builtin_pow10f, __builtin_pow10l, __builtin_scalb, __builtin_fmal, __builtin_scalbf,
__builtin_scalbl, __builtin_significand, __builtin_significandf, __builtin_signbitf, __builtin_significandl,
__builtin_sincos, __builtin_sincosf, __builtin_sincosl, __builtin_y0, __builtin_y0f, __builtin_y0l, __builtin_y1,
__builtin_y1f, __builtin_y1l, __builtin_yn, __builtin_ynf, __builtin_ynl.

Bitfields
The bitfields implementation is different compared to GCC. Please see the following links for more details:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118507.html

http://lists.llvm.org/pipermail/llvm-dev/2017-October/118507.html

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with GCC RL78 – 34

https://gcc.gnu.org/ml/gcc/2017-10/msg00192.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1260.htm

Extended Asm
Clang supports GCC's extended syntax. The only difference is in what constraints are supported. Currently only two
constraints are supported in Clang:

"r" for 16 bit register

"R" for 8 bit register pair.

C++ Language compatibility
The following is the the complete list of GCC C++ extensions from GCC RL78 2020q2 release not supported in LLVM
RL78 toolchain.

Extracting the function pointer from a bound pointer to member function
Consider the following example:

class A {};

extern A a;
extern int (A::*fp)();
typedef int (*fptr)(A *);

fptr p = (fptr)(a.*fp);

When calling non-static member functions the compiler sets the “this” pointer, does the dynamic dispatch for
virtual functions etc. It looks like this extension lets all those things for the user to do, which is both difficult and
error-prone.

Also the GCC documentation does not explain how such a pointer(p from the example on the left) can be used, the
example on the left is all there is in the GCC documentation.

This also look like it infringes the encapsulation principle in C++ since it exposes “private” pointer from the class.

In case of LLVM the user will see a error similar to this one:

error: reference to non-static member function must be called; did you mean to call it with no
arguments?
fptr p = (fptr)(a.*fp);
^~~~~~~
()

Namespace Association
Consider the following example:

namespace std {
namespace debug {
template <class T> struct A { };
}

https://gcc.gnu.org/ml/gcc/2017-10/msg00192.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1260.htm

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with CCRL – 35

using namespace debug __attribute ((__strong__));
template <> struct A<int> { }; // ok to specialize

template <class T> void f (A<T>);
}

int main()
{
f (std::A<float>()); // lookup finds std::f
f (std::A<int>());
}
This extension has been removed from newer versions of GCC.

The GCC 4.x documentation on which RL78 is based says:

"Caution: The semantics of this extension are not fully defined. Users should refrain from using this extension as its
semantics may change subtly over time. It is possible that this extension will be removed in future versions of G++."

In case of LLVM the users will see errors similar to:

error: use of undeclared identifier 'f'; did you mean 'std::f'?
f (std::A<float>()); // lookup finds std::f
^
std::f
:note: 'std::f' declared here
template <class T> void f (A<T>);
^

ABI compatibility with GCC RL78
There's no ABI compatibility between GCC RL78 and LLVM RL78. LLVM RL78 has been implemented following the
CCRL implementation not GCC RL78.

In concrete terms what this is means is the following, for example, is:

-calling convection: while GCC RL78 passes all the parameters on the stack LLVM uses registers as well just like CCRL
which means improved performance.

-when using llvm-readelf (the equivalent of rl78-elf-readelf) will dump information from ELF file like elf flags (-h
option) and/or relocations (-r option) will only make sense on ELF files built with LLVM RL78 or CCRL not with GCC
RL78. The opposite is true in case of GCC RL78 as well (dumping information with rl78-elf-readelf will only make
sense on ELF files built with GCC RL78 not with CCRL or LLVM RL78.

As a consequence object files built with the two compilers cannot be linked together.

Compatibility with CCRL
LLVM RL78 aims to be compatible with CCRL at both source code and binary level.

For source code compatibility as seen in chapter 2 some CCRL extensions are already available in LLVM RL78 and
will aim to implement all CCRL language extensions, as defined in the CCRL user manual, in future releases. Some
extensions will be available by default while some only be available using -frenesas-extensions.

For compatibility at binary level LLVM RL78 has followed the CCRL implementation from the beginning.

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with CCRL – 36

Assembler compatibility
LLVM RL78 supports most of the CC-RL assembly expressions, operators and directives, with a couple of exceptions
and restrictions.

Contrary to CC-RL, where most integers are handled as unsigned, in LLVM absolute values are handled as 64 bit
signed integers.
Expressions will be evaluated at this bitwidth, then truncated if needed to the appropriate width.

This results in some differences when evaluating expressions.
For example: -1 > 1 will evaluate to 1 (True) in CC-RL and to 0 (False) in LLVM.

While CC-RL assembler is case insensitive, currently in LLVM only the uppercase operators/directives are
supported, this will be addressed in next release.

Operators and directives

Category Operator or Directive Status Notes

Arithmetic operators +, -, *, /, %, +sign, -sign Supported

Bit logic operators ~, &, |, ^ Supported

Relational operators "==, !=, >, >=, <, <=" Supported

Logical operators &&, || Supported

Shift operators >>, << Supported

Byte separation operators HIGH Supported

LOW Supported

2-byte separation
operators

HIGHW Supported

LOWW Supported

MIRHW Supported

MIRLW Supported

SMRLW Supported

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with CCRL – 37

Special operators DATAPOS Supported*

BITPOS Supported*

Section operators STARTOF Supported

SIZEOF Supported

Other operator () Supported

Bit position specifier Supported

Section definition
directives

.SECTION, Supported*, with
exceptions

Unsupported relocation
attributes: SBSS_BIT,
BSS_BIT, BIT_AT

.CSEG Supported*

.DSEG Supported*

.BSEG Not supported

.ORG Supported*

.OFFSET Supported*

Symbol definition
directives

.EQU Supported*

.SET Supported*

Data definition/Area
reservation directives

.DB Supported*

.DB2 Supported*

.DB4 Supported*

.DB8 Supported*

.DS Supported*

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with CCRL – 38

.DBIT Not supported

.ALIGN Supported*, with
restrictions

Can be aligned only to
powers of two.

External definition/
External reference
directives

.PUBLIC Supported*

.EXTERN Supported*

.EXTBIT Not supported

Compiler output directives .LINE Parsed*, but
ignored

.STACK Parsed*, but
ignored

._LINE_TOP Parsed*, but
ignored

._LINE_END Parsed*, but
ignored

.TYPE Parsed*, but
ignored

.VECTOR Parsed*, but
ignored

Macro directives .MACRO Supported*

.LOCAL Supported*

.REPT Supported*

.IRP Supported*

.EXITM Supported*, with
exceptions

Mixing them with
conditional assembly
control instructions is not
supported.

e2 studio Project – LLVM for Renesas RL78 User Manual

Compatibility with CCRL – 39

.EXITMA Supported*, with
exceptions

Mixing them with
conditional assembly
control instructions is not
supported.

.ENDM Supported*

Branch directives .Bcond Not supported

File input control
instructions

INCLUDE Supported*

BINCLUDE Supported*

Mirror source area
reference control
instructions

MIRROR Not supported

Assembler control
instructions

NOWARNING, WARNING Supported*

Conditional assembly
control instructions

IFDEF, IFNDEF, IF, IFN,
ELSEIF, ELSEIFN, ELSE,
ENDIF

Supported*, with
exceptions

Mixing them with macro
directives are not
supported.

*Only when -frenesas-extensions is specified.

 Assembler generated symbols
@$IMM_<constant value>
Currently, the compiler will create local imm symbols for all unique constants that appear in an expression.
This will be improved in a future release.

.$$$<symbol-name>
When defining a bit positional symbol, for example:
 SYM1 .EQU 0x1234.2
The compiler will create two symbols (SYM1 and .$$$SYM1), to store the address and the bit position respectively.

ABI compatibility with CC-RL
LLVM RL78 has followed the CC-RL specification for compatibility at binary level which allows linking together
object files produced by both compilers with the following restrictions:

-The comparability only covers the C language at the moment.

-The library format((.lib in CC-RL, .a in case of LLVM) are different, as a consequence LLVM linker can't read a
CCRL .lib file while CCRL linker can't read an LLVM .a file.

e2 studio Project – LLVM for Renesas RL78 User Manual

Libgen – 40

-Some library functions which have pointers as parameters (printf, scanf, vsscanf, etc) have different
declarations(when the first paramter is a near pointer in case of LLVM and a far pointer in case of CC-RL) as a
consequence there can't be no mixing using the declaration (from .h) from one toolchain and the definition from
the other toolchain.

-Both the C and runtime libraries are larger in LLVM than CC-RL. When using functions not present in the CC-RL
library this will lead to link errors when linking with CC-RL. In such cases it is recommended to link using LLVM.

-Any specific metadata present in the object files generated by one compiler is unrecognised by the other toolchain
linker. This mainly includes link time optimisations (-Owhole-program in case of CC-RL and -flto in case of LLVM)
This is why it is recommended not to use link time optimisations when linking object files produces by the other
compiler. It also recommended to use -fno-addrsig when compiling an object file with LLVM which will be linked
using CC-RL.

Libgen
The GNU library generator tool libgen , builds the Newlib, Newlib_nano, Compilerrt, Libcxx, and Libcxxabi
libraries with the user-specified options for the Renesas RL78 target. It helps in generating the libraries that are fine-
tuned with the user’s application.

The libgen operates in two modes viz. command-line mode and interactive mode.

In the command line mode, the entire command line consisting of options and their suboptions has to be provided.

In the interactive mode, a menu is displayed on the command line. Following are the various menu options,

Select Library

Supported options are newlib, newlib_nano, compilerrt, libcxx and libcxxabi. By default ’newlib’ will be selected.

Enter Compiler Options

Specify compiler options. Any kind of compiler option can be specified, from optimization options to defines which
can change the configuration of the libraries being built, for example passing -D_WANT_IO_C99_FORMATS (see
newlib configure file) when building newlib enables extra printf format specifiers (also grows the code size of
newlib).

Enter Assembler Options

Specify assembler options.

Enter Path & Name for Library

Specify the path and name of the archive. By default library name is ’libout.a’.

The libgen utility builds the user-selected library from the library sources installed with the toolchain. The

library sources will be compiled using the clang utility and archived using the llvm- ar utility.

The options which can be used with libgen are listed below.

-I,--interactive

Specify the command line options in user-friendly interactive mode.

-S,--select-lib=

Specify the sources to be used for building the library. Supported options are newlib, newlib_nano, compilerrt,
libcxx and libcxxabi. If nothing is specified by the user under this option, ’newlib’ will be selected.

e2 studio Project – LLVM for Renesas RL78 User Manual

Libgen – 41

-C,--compiler-options=

Specify the compiler options i.e. cpu specific options like -mcpu=S3 and/or optimization options like -O2, -Os, etc.
The sub-options should be separated by ’,’.

-A,--assembler-options=

Specify the assembler options (in case of assembly files). These options should not be prefixed with ’-Wa,’. The sub-
options should be separated by ’,’

.-o,--output=

Specify the name for the library archive. By default, the library is generated in the current working directory for
command-line applications.

-h,--help

Print (on the standard output) the description of the command line options supported by the ’libgen’ tool.

-v,--version

Show the version number of the libgen and exit.

	LLVM for Renesas RL78 User Manual
	Introduction
	Specific extensions for RL78
	Command options
	Extensions to the C language family
	Predefined Target Macros
	Keywords
	Attributes
	Pragmas
	Built-in / Embedded Functions

	Compatibility with GCC RL78
	GCC RL78 target specific differences
	Linker script compatibility
	 RL78 specific linker script requirements

	Command Line options compatibility
	Overall options
	C language options
	C++ language options
	Language independent options
	Warning options
	C-only Warning Options
	Debugging options
	Preprocessor Options
	 Assembler options
	Directory Options
	Linker Options
	Optimization options
	 Tool options

	Assembler compatibility
	.eqv symbol, expression
	.fail expression
	.hword
	.lflags
	.string8 "str", .string16, 32, 64
	.stabd, .stabn, .stabs
	.mri val
	.gnu_attribute tag,value
	.func name[,label], .endfunc
	.vtable_entry table, offset
	.vtable_inherit child, parent
	.loc_mark_labels enable
	Listing Directives: .list, .nolist, .eject, .psize lines , columns, .sbttl "subheading", .title "heading"

	C Language compatibility
	Nested Functions
	Constructing Calls
	Pointer Arguments in Variadic Functions
	Attributes
	Vector Extensions
	Miscellaneous Builtin functions
	Bitfields
	Extended Asm

	C++ Language compatibility
	Extracting the function pointer from a bound pointer to member function
	Namespace Association

	ABI compatibility with GCC RL78

	Compatibility with CCRL
	Assembler compatibility
	Operators and directives
	 Assembler generated symbols

	ABI compatibility with CC-RL

	Libgen

