

© CyberThor Studios Ltd.

Release Notes: GCC 8.3.0.202002-GNURX

Release Notes: GCC 8.3.0.202002-GNURX

30th of April, 2020

CyberThor Studios Ltd. is releasing the GCC 8.3.0.202002-GNURX, a cross compiler tool for Renesas RX
micro-controllers.

SALIENT FEATURES

The GCC 8.3.0.202002-GNURX toolchain is based on:

❖ GCC 8.3.0 [released]

❖ Binutils 2.24 [released]

❖ Newlib 3.1.0 [released]

❖ GDB 7.8.2 [released]

The latest patches are applied to GCC, Binutils and Newlib sources.

ABOUT GCC 8.3.0.202002-GNURX

 Release Version: GCC 8.3.0.202002-GNURX

 Release Date: 30th of April, 2020

Platforms Supported:

 Red Hat GNU/Linux v8.0 or later (or compatible distribution)

Windows XP, Windows 7, Windows 8, Windows 10

 Language: C, C++

 Targets:

RX100

RX200

RX600

RX64M

RX700

 Object File Format: ELF

CHANGES IN THE GCC 8.3.0.202002-GNURX

This section describes the fixes made in the GCC 8.3.0.202002-GNURX release.

GCC:
1. [Bug Fix] Fixed a bug related to the stack usage calculation
2. [Bug Fix] Fixed a bug related to the mvfc instruction.

GDB:
1. [Bug Fix] New set/show RX GDB options: force-64bit-double, force-isa, force-double-fpu:

Usage examples:

set rx force-64bit-double on|off|0|1
show rx force-64bit-double
set rx force-isa v1|v2|v3
show rx force-isa
set rx force-double-fpu on|off|0|1
show rx force-double-fpu

2. [Improvement] rx-elf-run is not compatible with the CCRX open sys library. To achieve this, enable the
ccrx-sys-flags options.

Example: rx-elf-run --ccrx-sys-flags <file>

Newlib:
1. [Improvement] Optimized string, labs and ldiv functions.

INSTALLER and RPM:

1. The GCC 8.3.0.202002-GNURX Installer onwards supports the 'Custom Installation' and 'Default

Installation' modes. The 'Default Installation' mode is set by default where the tools are installed
into the default location at "C:\Program Files\GCC 8.3.0.202002-GNURX" and the user's
username and activation key are silently accepted if cached in the registry.

2. The GNURX ABI (Application Binary Interface) is made available on our GNU Tools support
website (https://gcc-renesas.com) and also provided along with Linux RPM and Windows
installer.

Notes:

This installer does not provide an option to integrate the GNURX toolchain with e2 studio, as the e2 studio
IDE will automatically detect the GNURX toolchain installation on start-up for integration. Alternatively, you
may use the 'Toolchain Management' feature in e2 studio to achieve this.

For details on e2 studio please visit the following link below:
http://www.renesas.com/products/tools/ide/ide_e2studio/index.jsp

There is no support in this installer to integrate toolchain with the HEW IDE.

https://gcc-renesas.com/
http://www.renesas.com/products/tools/ide/ide_e2studio/index.jsp

KNOWN ISSUES IN GCC 8.3.0.202002-GNURX

This section describes all known issues for this particular release:

1. -Wreturn-type is enabled by default
G++ now assumes that control never reaches the end of a non-void function (i.e. without reaching a return
statement). This means that you should always pay attention to -Wreturn-type warnings, as they indicate
code that can misbehave when optimized.

To tell the compiler that control can never reach the end of a function (e.g. because all callers enforce its
preconditions) you can suppress -Wreturn-type warnings by adding __builtin_unreachable:

 char signchar(int i) // precondition: i != 0
 {
 if (i > 0)
 return '+';
 else if (i < 0)
 return '-';
 __builtin_unreachable();
 }

Because -Wreturn-type is now enabled by default, G++ will warn if main is declared with an implicit int
return type (which is non-standard but allowed by GCC). To avoid the warning simply add a return type to
main, which makes the code more portable anyway.

2. Stricter rules when using templates
G++ now diagnoses even more cases of ill-formed templates which can never be instantiated (in addition to
the stricter rules in GCC 7). The following example will now be diagnosed by G++ because the type of
B<T>::a does not depend on T and so the function B<T>::f is ill-formed for every possible instantiation of the
template:

 class A { };
 template <typename T> struct B {
 bool f() const { return a; }
 A a;
 };

In member function 'bool B<T>::f() const':
error: cannot convert 'const A' to 'bool' in return
 bool f() const { return a; }
 ^
Ill-formed template code that has never been tested and can never be instantiated should be fixed or
removed.

3. Changes to alignof results
The alignof operator has been changed to return the minimum alignment required by the target ABI,
instead of the preferred alignment (consistent with _Alignof in C).

Previously the following assertions could fail on 32-bit x86 but will now pass. GCC's preferred alignment for
standalone variables of type double or long long is 8 bytes, but the minimum alignment required by the ABI
(and so used for non-static data members) is 4 bytes:

 struct D { double val; };
 static_assert(alignof(D) == alignof(double), "...");
 struct L { long long val; };
 static_assert(alignof(L) == alignof(long long), "...");

Code which uses alignof to obtain the preferred alignment can use __alignof__ instead.

4. Associative containers check the comparison function
The associative containers (std::map, std::multimap, std::set, and std::multiset) now use static assertions to
check that their comparison functions support the necessary operations. In C++17 mode this includes
enforcing that the function can be called when const-qualified:

 struct Cmp {

 bool operator()(int l, int r) /* not const */ { return l < r; }

 };

 std::set<int, Cmp> s;

In member function 'bool B<T>::f() const':

error: static assertion failed: comparison object must be invocable as const

 static_assert(is_invocable_v<const _Compare&, const _Key&, const _Key&>,

 ^~~

 bool f() const { return a; }

 ^

This can be fixed by adding const to the call operator:

 struct Cmp {
 bool operator()(int l, int r) const { return l < r; }
 };

5. The following feature is considered deprecated: Optlib library

The OPTLIB library feature is considered deprecated, due to the following reasons:

1. It does not contain all the headers and the defines of the ANSI/ISO standard.
2. Partial implementation of library functions (e.g. standard I/O functions are not all implemented)
3. The math library sacrifices precision for speed/code size (not IEEE754 compliant)

Eventually, it will be completely removed from the product, but it is still available in this release.
You should begin planning now to employ alternate methods for any applications, code, or usage that
depend on this feature.

FREE SUPPORT FOR GCC 8.3.0.202002-GNURX

For free technical support, please register at
https://gcc-renesas.com

For your feedback and suggestions, please visit
https://gcc-renesas.com/help/contact-us/

https://gcc-renesas.com/
https://gcc-renesas.com/help/contact-us/

