
© CyberThor Studios Ltd.

Release Notes: GCC 8.3.0.202204-GNURX

Release Notes: GCC 8.3.0.202204-GNURX

30th of November, 2022

CyberThor Studios Ltd. is releasing the GCC 8.3.0.202204-GNURX, a cross compiler tool for Renesas RX
micro-controllers.

SALIENT FEATURES

The GCC 8.3.0.202204-GNURX toolchain is based on:

❖ GCC 8.3.0 [released]

❖ Binutils 2.36.1 [released]

❖ Newlib 4.1.0 [released]

❖ GDB 7.8.2 [released]

The latest patches are applied to GCC, Binutils and GDB sources.

ABOUT GCC 8.3.0.202204-GNURX

Release Version: GCC 8.3.0.202204-GNURX

Release Date: 30th of November, 2022

Platforms Supported:
64bit RedHat GNU/Linux v8.0 or later (or compatible distribution)

Windows XP, Windows 7, Windows 8, Windows 10

Language: C, C++

Targets:

RX100

RX200

RX600

RX64M

RX700

Object File Format: ELF





CHANGES IN THE GCC 8.3.0.202204-GNURX

This section describes the fixes made in the GCC 8.3.0.202204-GNURX release.

GCC:

1. [Improvement] DCMR register not getting saved/restored on function entry/exit

In the current release, the DCMR register will be saved on function entry and restored on function exit.

2. [Improvement] Negated floats getting promoted to double

In previous releases, negation of floats resulted in their promotion to double, generating sub-optimal
code if doubles were represented on 8 bytes.
In the current release of the compiler, promotion will no longer happen when negating floats.

3. [Deprecation] Automatic interrupt vector entry generation

Declaring interrupt handlers with a numeric argument resulted in the compiler creating additional
symbols, which could be referenced in the linker script to initialize the interrupt vector.
This feature is being deprecated and removed in a future release, since the current implementation does
not work when paired with the -gc-section command line option.

INSTALLER:

The GNURX ABI (Application Binary Interface) is made available on our GNU Tools support website
(https://llvm-gcc-renesas.com) and also provided along with Linux and Windows installer.

This installer does not provide an option to integrate the GNURX toolchain with e2 studio, as the e2 studio
IDE will automatically detect the GNURX toolchain  installation on start-up for integration. Alternatively, you
may use the 'Toolchain Management' feature in e2 studio to achieve this.

For details on e2 studio please visit the following link below:
http://www.renesas.com/products/tools/ide/ide_e2studio/index.jsp

Integration with the HEW IDE is not supported by the installer.

https://llvm-gcc-renesas.com
http://www.renesas.com/products/tools/ide/ide_e2studio/index.jsp


KNOWN ISSUES IN GCC 8.3.0.202204-GNURX

This section describes all known issues for this particular release:

1. -Wreturn-type is enabled by default
G++ now assumes that control never reaches the end of a non-void function (i.e. without reaching a return
statement). This means that you should always pay attention to -Wreturn-type warnings, as they indicate
code that can misbehave when optimized.

To tell the compiler that control can never reach the end of a function (e.g. because all callers enforce its
preconditions) you can suppress -Wreturn-type warnings by adding __builtin_unreachable:

char signchar(int i) // precondition: i != 0
{

if (i > 0)
return '+';

else if (i < 0)
return '-';

__builtin_unreachable();
}

Because -Wreturn-type is now enabled by default, G++ will warn if main is declared with an implicit int
return type (which is non-standard but allowed by GCC). To avoid the warning simply add a return type to
main, which makes the code more portable anyway.

2. Stricter rules when using templates
G++ now diagnoses even more cases of ill-formed templates which can never be instantiated (in addition to
the stricter rules in GCC 7). The following example will now be diagnosed by G++ because the type of
B<T>::a does not depend on T and so the function B<T>::f is ill-formed for every possible instantiation of
the template:

class A { };
template <typename T> struct B {

bool f() const { return a; }
A a;

};

In member function 'bool B<T>::f() const':
error: cannot convert 'const A' to 'bool' in return

bool f() const { return a; }
^

Ill-formed template code that has never been tested and can never be instantiated should be fixed or
removed.

3. Changes to alignof results
The alignof operator has been changed to return the minimum alignment required by the target ABI,
instead of the preferred alignment (consistent with _Alignof in C).

Previously the following assertions could fail on 32-bit x86 but will now pass. GCC's preferred alignment for
standalone variables of type double or long long is 8 bytes, but the minimum alignment required by the ABI
(and so used for non-static data members) is 4 bytes:

struct D { double val; };
static_assert(alignof(D) == alignof(double), "...");
struct L { long long val; };
static_assert(alignof(L) == alignof(long long), "...");

Code which uses alignof to obtain the preferred alignment can use __alignof__ instead.



4. Associative containers check the comparison function
The associative containers (std::map, std::multimap, std::set, and std::multiset) now use static assertions to
check that their comparison functions support the necessary operations. In C++17 mode this includes
enforcing that the function can be called when const-qualified:

struct Cmp {
bool operator()(int l, int r) /* not const */ { return l < r; }

};
std::set<int, Cmp> s;

In member function 'bool B<T>::f() const':
error: static assertion failed: comparison object must be invocable as const

static_assert(is_invocable_v<const _Compare&, const _Key&, const _Key&>,
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

bool f() const { return a; }
^

This can be fixed by adding const to the call operator:

struct Cmp {
bool operator()(int l, int r) const { return l < r; }

};

5. The following feature has been removed: Optlib library

The OPTLIB library feature is now removed, due to the following reasons:

1. It does not contain all the headers and the defines of the ANSI/ISO standard.
2. Partial implementation of library functions (e.g. standard I/O functions are not all implemented)
3. The math library sacrifices precision for speed/code size (not IEEE754 compliant)

6. Section to segment mapping issue

In some rare cases there's an issue in the section to segment mapping which can cause load problems in
the debugger.
This issue is being investigated and will be fixed in the next release.



FREE SUPPORT FOR GCC 8.3.0.202204-GNURX

For free technical support, please register at
https://llvm-gcc-renesas.com

For your feedback and suggestions, please visit
https://llvm-gcc-renesas.com/help/contact-us/

https://llvm-gcc-renesas.com
https://gcc-renesas.com/help/contact-us/

